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Executive Summary 

The most urgent issues in crash safety research have typically been identified by searching for 
high-frequency crash and injury types in retrospective, real-world crash data. However, these 
retrospective analyses can highlight safety issues that have already been addressed by recent or 
anticipated safety countermeasures. This report describes methods for using retrospective crash 
data to project crashes beyond the years for which retrospective data is available and into the 
future. The model uses available forecasts of population and transportation trends, as well as 
estimates of the effects of current and planned safety countermeasures. The results of such 
projections have the potential to be more useful for identifying the crash, occupant, and injury 
issues that are expected to remain important in the future than analyses that rely solely on 
retrospective data. These projections are anticipated to assist in identifying the most important 
issues to address in motor vehicle safety research. Alternative versions of the model can be used 
to explore how future crash outcomes would change with variation of input parameters and 
assumptions. Such hypothetical versions of the model could even be used to identify 
countermeasures or combinations of safety interventions with the potential to meet goals for 
injury or fatality reduction. 
 
The projection model has been developed using National Highway Traffic Safety Administration 
crash datasets. The model uses individual crash cases from the past and adjusts them to represent 
how the frequency or outcome of similar cases would be different in the future. The retrospective 
source cases in the model are 2004 to 2015 National Automotive Sampling System 
Crashworthiness Data System occupant cases that have been reweighted with more recent data 
from the 2013 to 2015 National Automotive Sampling System General Estimates System and 
Fatality Analysis Reporting System crash datasets. The resulting dataset is consistent with 
national-level counts of passenger vehicle crash occupants by key parameters during these 
baseline years. Pedestrians, cyclists, and other non-occupants are not included in the current 
version of the model because NASS CDS does not contain data for crashes involving these road-
users.  
 
The framework for the projection model is based on the concept that a weighted occupant case in 
the retrospective dataset represents a corresponding number of similar occupant cases in real-
world crashes during the retrospective period. The effects of population and transportation 
trends, and of safety countermeasures that affect the frequency and outcome of crashes, are 
applied to each individual case in the model to project how the characteristics of those individual 
modeled cases would change if they occurred in the future. The expected effect of each modeled 
trend and safety countermeasure on crash frequency is applied to each occupant case in the 
retrospective dataset by successive adjustments to the case weight of affected cases. The 
expected effect of each modeled safety countermeasures on the outcome of the crashes that are 
still expected to occur is applied by manipulating the injuries documented in each case that is in 
the given countermeasure’s target population.  
 
Just as retrospective datasets can be analyzed to explore the characteristics of injury crashes in 
the past, the modified projected dataset developed using the proposed projection model can be 
used to analyze the crash, vehicle, occupant, and injury characteristics of crashes expected to 
remain in the future, given the particular assumptions for that projection.  
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The model is currently designed to develop full projection datasets for passenger vehicle 
occupants for the crash years 2020, 2025, and 2030. The model incorporates adjustments to crash 
projections based on the following forecasted population and transportation trends: population 
growth by age group, changing driver licensure rates by age group, increased crash exposure 
with improving economic factors, a continued shift in vehicle types in the fleet toward SUVs, 
and increasing belt use and age-appropriate child restraint use. Safety countermeasures coded for 
inclusion in the model to date include several active crash avoidance and mitigation 
technologies, passive crashworthiness and occupant protection improvements, infrastructure 
updates, and occupant and behavior interventions and changes that have the potential to affect 
crash safety.  
 
Estimates of population and transportation trends, and of the effectiveness and implementation or 
penetration rate of safety countermeasures, were drawn from a wide variety of sources including 
review of published literature, Federal Motor Vehicle Safety Standards, regulatory impact 
analyses for those standards, voluntary industry agreements, and insurance data. Some newer 
countermeasures have not yet been incorporated into the model, but it is anticipated that they can 
be added later as information about their effectiveness and likely penetration emerges. As such, 
the projections produced by the model should be considered snapshots of what the future could 
look like given the current understanding of safety technology and transportation trends. 
 
An evaluation version of the model has been developed for validation purposes. The evaluation 
model uses retrospective data from 2004 to 2012 to project crash outcomes in 2014. The 
projected 2014 dataset was compared to annual averages from retrospective real-world crash data 
from 2013 to 2015 to evaluate the model’s potential to predict the crash, occupant, and injury 
types that will be most frequent in a future year. 
 
This methods report provides a detailed description of the model design and implementation, as 
well as a comparison of results from the evaluation version of the model to the real-world 
comparison dataset for 2013 to 2015. Details of the specific countermeasures that are relevant to 
the evaluation version of the model are included as appendices to this report. Results of 2020 to 
2030 projections from the model will be reported separately, in a projection model results report 
currently in progress (Mallory et al., in press).
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1 Introduction 
Identification of the highest priority safety issues has typically been accomplished by searching 
retrospective crash data to identify crash scenarios, occupant types, or injuries that were most 
frequent or most harmful in the past (Mallory et al., 2017). These real-world database analyses 
typically involve ten or more years of case data and reflect the safety conditions in the decade (or 
more) before the search is performed. Few of the vehicles captured in these retrospective cases 
are equipped with the safety technology that is state-of-the-art at the time of the search. In effect, 
these retrospective analyses typically identify the most pressing safety issues of the previous 
decade, some of which may already have been addressed by safety interventions that are already 
being implemented or are expected to be implemented in the near future.  
 
A predictive look at expected crash frequency and outcomes that incorporates assumptions about 
recent and emerging countermeasures provides an alternative to a purely retrospective analysis 
for identifying the crash, occupant, and injury issues that are most urgent for motor vehicle 
safety research. While previous studies have employed forecasts of individual factors, such as 
economic conditions or population growth among older occupants to predict changes in the 
frequency and outcome of future crashes, all available factors expected to affect future crashes 
must be combined into a single analysis to provide a truly comprehensive projection. NHTSA’s 
methods for calculating benefits of isolated safety technologies and behavioral programs are the 
gold standard for estimating the number of future crashes or injuries they are expected to 
prevent. These analyses often account for the expected effects of other individual safety 
standards, or changes in parameters such as target population, or variables like restraint use on 
the effectiveness of the technology or program being evaluated. However, to capture a detailed 
forecast of the crashes and injuries expected to remain after the application of many population 
trends, transportation trends, and countermeasures, a predictive model would need to ensure that 
all overlapping trends and effects are accounted for and that the benefits for any crash that could 
be prevented by multiple countermeasures would not be double-counted in the results.  
 
The goal of this project is to develop a projection model that can combine many estimates and 
assumptions about safety countermeasures and transportation trends to produce comprehensive 
estimates of potential future crash outcomes. If it is assumed that the best available estimates of 
variables affecting future crash frequency and safety can be determined through a review of 
current literature, the resulting projection model could be used to better identify future safety 
issues. For countermeasures whose effectiveness or likely penetration in the future is uncertain, 
application of hypothetical ranges of parameter values could also be used to explore best-case 
and worst-case scenarios for future safety as well as to understand the effects of specific 
proposed safety programs or technologies.  
 
A modeling strategy has been developed to apply a broad set of predictive estimates to a 
retrospective case dataset to predict future crash frequency and outcome as comprehensively as 
possible. This framework allows the incorporation of predictions on diverse safety interventions 
such as crashworthiness countermeasures, crash avoidance and mitigation countermeasures, 
driver behavior programs, and infrastructure improvements into a single model. The model is 
designed so that the effects of these overlapping efforts to improve safety can be predicted 
simultaneously without double-counting. 
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This report describes the strategy used to develop this projection model, along with the details of 
the trends and countermeasures currently included in the model. Although projection results are 
not included in this report, results from an evaluation version of the model are included in 
Section 3. The evaluation version of the model was used to project crash outcomes in 2014, and 
the results were compared with real-world data from 2013 to 2015 as a means of assessing the 
reliability of the methods. Detailed descriptions of the countermeasures used in the evaluation 
version of the model are included in the appendices to this report.  

 
While the goal of this project is to create more accurate predictions of crash frequency and 
outcome in the future, uncertainty is inherent in a predictive model like this one. Every 
component in the model adds to the uncertainty in the results, starting with the initial 
retrospective dataset used as the basis for the model and compounded with every predictive 
adjustment made to the model occupant cases. The projections are highly dependent on the 
estimates underlying each trend and countermeasure, and if a new trend or countermeasure 
emerges or proves to have a different effect than initially estimated or is implemented at a 
different rate than expected, the projections are likely to be less accurate. 
 
Ultimately, the output of the model is intended to be used to try to change future outcomes by 
targeting research on the most frequent and harmful crash types and injuries in the projections. 
As such, even more important than the model’s absolute accuracy is its usefulness in identifying 
the most likely safety issues of the future. A single, comprehensive model that combines 
information from many sources, accounting for simultaneous changes affecting transportation 
safety, has the potential to provide perspective on how countermeasures and transportation trends 
may alter crash outcomes in the future and to be more useful than relying on individual estimates 
of shifts in overall crash rates or isolated benefits estimates for individual technologies and 
countermeasures.  
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2 Methods 
The projection model described in this report made incremental adjustments to passenger vehicle 
occupant cases in a weighted retrospective crash dataset. The retrospective dataset was 
composed of source cases that were drawn from NASS CDS and re-weighted with cases from 
NASS GES and FARS to represent national-level case counts. In the model, case weights and 
outcomes for individual occupants in the retrospective dataset were adjusted per the predicted 
future effects of (1) shifting population and vehicle trends, and (2) recent and future safety 
countermeasures. These case-by-case adjustments to case weights and outcomes were intended 
to represent any expected differences in the case outcome that would result from documented or 
forecasted trends and safety countermeasures introduced between the year of the original crash in 
the retrospective dataset and the future projection year. 

2.1 Overall Model Design 
Overall model design is illustrated in Figure 1. Weighted, real-world retrospective cases from 
2004 to 2015 were used as a baseline for comparison to projected future crash statistics. These 
same real-world retrospective cases were also used to develop a foundational “stepping-stone” 
dataset to use as a basis for the projection model. Changes in the future frequency and outcome 
of crash cases like the ones represented by the source retrospective cases were predicted by 
applying the effects of the modeled trends and safety countermeasures to each occupant case in 
the model.  
 
In this case-by-case method, each case retained many of the crash and occupant characteristics 
documented in the original version of the source retrospective case, but the weighted frequency 
and injury outcome was modified in the projected future version of each case. In the model, a 
case was defined as a single passenger vehicle occupant. Pedestrians, cyclists, and other non-
occupants were not included in the current version of the model because NASS CDS does not 
contain data for crashes involving these road-users. The NASS-assigned weight in each original 
source case, equivalent to the number of real-world occupants it represents, was incrementally 
adjusted to a future predicted weight in the projected datasets for 2020, 2025, and 2030. Changes 
to the outcome of each case in the model were made by deleting or changing the severity of 
individual injuries in the case, based on the expected effects of the modeled countermeasures.  
 
Details of each stage of this adjustment process are illustrated in Figure 1 and discussed in 
Sections 2.2 to 2.6. The stages discussed in each section include the initial reweighting of the 
source dataset; the separate treatment of individual occupants in vehicles in model year 2005 and 
later; and methods for applying population, vehicle and restraint use trends as well as modeled 
safety countermeasures. Analysis of model output is discussed in Section 2.7. The intermediate 
steps involved in developing the baseline retrospective dataset (shown in blue in Figure 1) and 
the stepping-stone datasets (shown in yellow in Figure 1) are illustrated in Figure 2 and Figure 3. 
The stepping-stone dataset serves as a foundational dataset for the projection model as described 
in Section 2.4. 
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Figure 1. 2020–2030 projection model design with corresponding location of additional information 

 
The projection methods were evaluated by running the model using source retrospective cases 
from NASS CDS 2004 to 2012 to develop a projection model for the crash year 2014. The 
reliability of the model was then assessed by comparing the projected 2014 results to real-world 
case data averaged over the period from 2013 to 2015. Details of this evaluation version of the 
model can be found in Section 3.  
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Analysis was performed using SAS data analysis software, Version 9.4 (SAS Institute, Cary 
NC), with input variables stored in Excel input files. SAS survey analysis procedures were used 
for all calculations involving weighted case data to account for the structure of the survey-
sampled data. 

2.2  Source Datasets 
The source data used to develop the model were drawn from NHTSA’s crash datasets (NASS 
CDS, NASS GES, and FARS) as described in detail in the following sections. These datasets 
were used to develop:  
 

• Baseline retrospective datasets, representing real-world crash outcomes in the past, and 
• Stepping-stone datasets, the datasets used as the basis for each projection version of the 

model (2020, 2025, and 2030).  
 
Details of the development of the retrospective datasets and stepping-stone datasets are in 
Section 2.3 and Section 2.4, respectively. 

2.2.1 NASS CDS 
Cases that served as the primary source cases for the projection model were drawn from 2004 to 
2015 NASS CDS, a survey-sampled NHTSA dataset that included detailed crash information on 
a national sample of crashes. The NASS CDS datasets are available from NHTSA (NHTSA, 
2020c), and details on the structure of the dataset and included variables can be found in the 
Analytical User’s Manual (Radja, 2016) and the Coding and Editing Manual (NHTSA, 2015a). 
Occupant cases were excluded from the source dataset if any of the following key parameters 
were unknown: 
 

• Injuries (either unknown if injured, or injured but with injury severity unknown),  
• Occupant age,  
• Vehicle model year,  
• Restraint use, and 
• Occupant role (driver/passenger). 

 
Non-crash injuries, such as inhalation and drowning, and occupants who had only these injuries, 
were also excluded from the analysis. After applying these exclusions, a raw total of 71,954 
NASS CDS case occupants remained.  
 
Each NASS CDS case was originally weighted with the CDS Ratio Inflation Factor (variable 
name RATWGT). As described in the NASS CDS Analytical User’s Manual (Radja, 2016), this 
weight variable is calculated based on the design of the NASS CDS survey-sampled dataset as a 
function of case parameters and of the estimated total number of crashes in the United States in 
the year the crash occurred. A single occupant case that was subsequently found to be overly 
influential on results in several analysis categories was downweighted for use in the projection 
model, as described in Section 2.3.1. This occupant was identified as a “high leverage” case 
using procedures developed to find analysis bins that were excessively influenced by a small 
number of cases. These procedures to check for high leverage cases are explained in detail in 
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Section 2.8. Subsequently, all CDS-weighted source cases were reweighted using FARS and 
NASS GES to correct for potential bias resulting from sampling variation and the exclusion of 
cases with unknown parameters, as discussed in Section 2.3 and Section 2.4.  
 
Case variables, including crash, event, occupant, and injury descriptors were retained for each 
occupant so that the applicability of every countermeasure could be determined and so that 
retrospective datasets and projected datasets could be analyzed and compared by a broad set of 
occupant parameters, crash parameters, and by a variety of measures of harm. See Section 2.7.1 
for descriptions of the harm measures used in the analysis of the model, such as costs and 
numbers/rates of fatalities and injuries. 
 
The Abbreviated Injury Scale is a system for coding and rating the severity of individual injuries. 
All injuries in NASS CDS 2004 to 2009 were originally coded using NHTSA’s AIS coding 
manual corresponding to the Abbreviated Injury Scale Version 1990/Update 1998 (AAAM, 
1998) while all injuries in cases from NASS CDS 2010 and later were originally coded using the 
NHTSA Injury Coding Manual that was based on AAAM’s 2005 AIS/Update 2008 (AAAM, 
2008). The injuries from these later cases were mapped in the current project to the 
corresponding codes in the 1990/98 AIS version as recommended in AAAM’s AIS 2005/08 
coding manual. The reason that injuries coded in the more recent version of AIS were converted 
to the earlier version of AIS (instead of translating all codes to the most recent AIS version) was 
that the majority of the NASS CDS source cases were coded in the earlier 1990/98 AIS version. 
Converting all coded injuries to the older AIS system reduced the number of cases that needed to 
be translated, minimizing the potential loss of detail and accuracy that is inherent in conversion 
of injury codes between coding systems. 
 
Among the new codes introduced in the 2005/08 version of AIS were several specific codes for 
bilateral injuries that had previously been coded with two separate injury codes in earlier AIS 
versions. For example, bilateral traumatic amputation of the upper extremities at the elbow 
would have been coded as two separate AIS 3 injuries (AIS 711000.3) in the AIS 1990/98 
version. Using the AIS 2005/08 version, the same occupant would be coded with a single AIS 5 
injury code (AIS 711002.5). The code translations provided in the AIS 2005/08 coding manual 
recommend that the bilateral injury codes (e.g., AIS 2005/08 711002.5) be translated directly to 
the corresponding single injury codes (e.g., AIS 1990/98 711000.3) when translating from the 
AIS 2005/08 version to the AIS 1990/98 version. In this model, the translation deviated from this 
recommendation by translating these bilateral injuries coded in AIS 2005/08 to two instances of 
the corresponding unilateral injury code in AIS 1990/98 to better represent the injuries as they 
would originally have been coded in AIS 1990/98. Sixteen cases originally coded with bilateral 
injuries using the AIS 2005/08 codes were subsequently converted to pairs of AIS 1990/98 
injuries using this method. 
 
For AIS 2005 codes that did not have a recommended AIS 1990/Update 1998 translation code, 
the hard-coded AIS 2005 code was used directly to categorize the injury severity of the case by 
maximum AIS (MAIS) and to categorize the body region, structure, and type of injury.  
 
Note that, starting in crash year 2009 in NASS CDS, only an abbreviated Occupant Assessment 
record was completed for occupants in vehicles 10 years old or older at the time of the crash. 
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Since detailed injury data was unavailable for these occupants, they were excluded from the 
analysis just as were other cases where injury or other key information was unavailable. 
Implications of this data collection change for this model, and adjustments made to the model to 
account for this change, are discussed in Section 2.4 and Section 3. 

2.2.2 FARS 
Fatal occupant cases are under-represented in NASS CDS, based on comparison to FARS, a 
nationwide census of fatal crashes. Therefore, the fatal NASS CDS cases used in the model were 
reweighted using FARS. Data from FARS was used to determine the total average annual 
number of fatalities in NASS CDS-applicable vehicles by seat position, age, and restraint use so 
that fatal cases from the source NASS CDS dataset could be reweighted accordingly. FARS 
cases used for this reweighting step were drawn from crash years 2004 to 2015 for the projection 
models for 2020, 2025, and 2030. FARS datasets are available from NHTSA (NHTSA, 2020a) 
and details on the structure of the dataset and included variables can be found in the Analytical 
User’s Manual (NHTSA, 2019). 
 
Inclusion criteria for FARS cases used in reweighting were as follows: 
 

• Case occupant is fatality, 
• Person type is passenger vehicle occupant, 
• Age is known, 
• Crashes involving CDS-eligible vehicles, i.e., crashes involving at least one passenger 

vehicle weighing less than 10,000 pounds (excluding buses unless van-based and 
motorhomes unless light-truck based), and 

• Eligible passenger vehicles were identified using the FARS body type variable (variable 
name BODY_TYP, included variable values 0-22, 24-49).  
 

No limits were placed on vehicle model year so that annual national totals of passenger vehicle 
occupant fatalities could be estimated for vehicles of all model years. Case occupants were not 
excluded based on tow-status of vehicles in the crashes. If the model had excluded crashes that 
did not meet the CDS criteria of involving at least one passenger vehicle towed due to damage, 
almost 1000 cases per year would have been excluded from the FARS dataset used in the model. 
Since FARS is a census dataset, fatal cases from FARS are representative of all fatalities among 
U.S. passenger vehicle occupants. Therefore, no weighting was used for analysis of FARS data.  
 
Fatal cases in the NASS CDS source dataset were reweighted using FARS data according to the 
procedures described in Section 2.3 and Section 2.4 for the retrospective dataset and the 
stepping-stone datasets used in the projection models for 2020, 2025, and 2030.  
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2.2.3 NASS GES 
NASS GES is a survey-sampled NHTSA crash dataset. It includes more cases than NASS CDS, 
but provides less information about the crashes, occupants and injuries in each case. NASS GES 
datasets are available from NHTSA (NHTSA, 2020b) and details on the structure of the dataset 
and included variables can be found in the Analytical User’s Manual (NHTSA, 2016a). Data 
from NASS GES was used to estimate the total average annual number of non-fatally injured 
occupants in NASS CDS-applicable vehicles by seat position, age, restraint use, and injury 
severity so that non-fatal cases from the source NASS CDS dataset could be reweighted 
accordingly. NASS GES cases used for this reweighting step were drawn from crash years 2004 
to 2015 for the projection models for 2020, 2025, and 2030.  
 
Inclusion criteria for NASS GES cases used in reweighting were as follows: 
 

• Person type is vehicle occupant,  
• Occupant case is non-fatal, 
• Occupant is in CDS-eligible vehicle, i.e., a passenger vehicle weighing less than 10,000 

pounds (excluding buses unless van-based and motorhomes unless light-truck based), and 
• Eligible passenger vehicles were identified using the GES body type variable (variable 

name BODYTYPE, included variable values 0-22, 24-49).  
 
Imputed variables drawn directly from NASS GES were used where body type, age, and injury 
severity variables were missing. Thus, estimates of total numbers of injury cases were not 
underestimated as a result of cases missing data. No limits were placed on vehicle model year so 
that national annual totals could be estimated for vehicles of all model years. Weighted data was 
used for all NASS GES analyses. 
 
Injury cases in the NASS CDS source dataset were reweighted for the model’s retrospective 
dataset and stepping-stone datasets using NASS GES data according to the procedures described 
in Section 2.3 and Section 2.4.  

2.3  Baseline Retrospective Dataset 2004-2015 
The baseline retrospective dataset represents crashes in the past. It is an annualized “average” 
dataset of NASS CDS occupants in crashes between 2004 to 2015 and it serves as a real-world 
baseline or comparison dataset in this model. The baseline retrospective dataset is distinct from 
the stepping-stone datasets that were each individually reweighted to serve as foundational 
datasets for the 2020, 2025, and 2030 projection models, as described in Section 2.4. The 
baseline retrospective dataset is intended to represent actual cases during the 2004 to 2015 period 
with aggregated weight equal to the annualized average of these years. It is not the basis for 
projections: it is the “past” data that was used to compare future projected outcomes to average 
past outcomes.  

The baseline retrospective dataset was drawn from the NASS CDS source dataset described in 
Section 2.2 and reweighted using cases from NASS GES and FARS to: 
 

• Correct for any biases resulting from dropping missing-variable cases,  
• Adjust for undercounting of fatal cases in NASS CDS,  
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• Adjust for under-reporting of low-severity cases in NASS CDS, and 
• Get the best estimate of the annual average number of NASS CDS-eligible cases in the 

U.S. crash population. 
 
Occupant cases used for reweighting the retrospective dataset were drawn from FARS (fatal 
cases only) and NASS GES (non-fatal cases only) for the entire data range of 2004 to 2015. A 
model option is also available to provide a baseline retrospective dataset without the adjustment 
for under-reporting of low-severity cases.  
 
Following reweighting, the dataset was adjusted to correct for belt use over-reporting. The steps 
in the development of the baseline retrospective dataset are illustrated in Figure 2 and explained 
in detail in the following sections. 
  

 
Figure 2. Overview of the development of the baseline retrospective dataset 

2.3.1 Retrospective Dataset Case Reweighting Using FARS and GES 
Reweighting was performed by grouping all cases in the NASS CDS source dataset, all fatal 
cases in the FARS reweighting dataset, and all non-fatal cases in the NASS GES reweighting 
dataset by the occupant characteristic bins shown in Table 1. Binning was performed with 
weighted case data from NASS CDS and GES and with unweighted data from FARS. As 
discussed in Section 2.2.1, a single NASS CDS occupant case1 was identified as having high-
leverage effects on multiple analysis categories. Therefore, at this stage before reweighting with 
NASS GES, that CDS case’s weight (CDS variable name RATWGT) was set to the average case 
weight of all other CDS cases in its corresponding bin in Table 1 (Restrained Passengers, <16 

                                                 
1 Case year 2015, PSU 43, CASENO 126, VEHNO 2, OCCNO 3. 

2004-2015 NASS GES
Cases in towed
and non-towed 

passenger vehicles

Source Dataset: NASS CDS (2004-2015)

Reweighted with 2004-2015 FARS and NASS GES cases by 
restraint, injury severity, age, driver/passenger status.

“Baseline”
Retrospective
(2004-2015)

Adjust for belt-use over-reporting

2004-2015 FARS

Reweighting datasets

Optional: Default is to include in the 
model, but can be omitted

Reweight to correct for under-reporting 
to police of no/lower-severity injury

Legend



10 

years old, non-fatal MAIS 3-6). Details of the procedures used to identify high leverage cases are 
in Section 2.8. 

Table 1. Bins used for reweighting cases in source (NASS CDS) dataset using cases from  
NASS GES and FARS 

   Driver by Age Passenger by Age 

   <26 26-65 65+ <16 16-25 26-65 66+ 

R
es

tr
ai

ne
d Non-fatal 

MAIS 

0-1        

2        

3-6        

Fatal        

U
nr

es
tr

ai
ne

d 

Non-fatal 
MAIS 

0-1        

2        

3-6        

Fatal        
 
Since NASS GES does not include AIS-coded injury data, binning of NASS GES cases by injury 
severity for non-fatal cases was based on the KABCO injury scale. KABCO characterizes 
severity on a scale from “Killed (K)” to “No injury (O)” with A, B, and C representing 
decreasing severity of injury. It is used in police reports and is typically based on information 
available at the scene of the crash rather than on medical records. Where this variable was 
unknown in NASS GES, imputed injury severity data was used (GES variable names INJSEV_H 
and INJSEV_IM). For each GES case, the individual’s KABCO code was converted to a 
probability of a non-fatal MAIS 0-1, 2, or 3-6 injury using probabilistic conversion tables based 
on AIS 1990/98 Update injury codes (Blincoe et al., 2015). These tables estimate the probability 
that the most serious injury in each non-fatal case was equivalent to a given MAIS severity level 
from 0 to 5 for each level of the KABCO scale. For example, using Table C-1 from the Blincoe 
et al. report for a GES occupant with a KABCO severity of B (“Non-incapacitating Injury”), the 
tables estimate a 84.24 percent probability that the occupant would survive with a corresponding 
MAIS severity code of AIS 0-1, an 11.13 percent probability it would be a non-fatal AIS 2, a 
4.47 percent probability that it would be a non-fatal AIS 3-5, and 0 percent probability that it 
would be a non-fatal AIS 6. The case weight assigned to the original GES case would be 
proportionally divided among the corresponding bins. For example, if the KABCO=B occupant 
had a case weight of 100, a case weight of 84.24 would be summed with the corresponding AIS 
0-1 bin, a case weight of 11.13 would be summed with the AIS 2 bin, and a case weight of 4.47 
would be summed with the AIS 3-6 bin. To estimate the total average annual number of 
occupants in a given bin, the probability of the given injury severity for each occupant in the bin 
was summed across all occupants, since probability theory dictates that the sum of the individual 
probabilities is equal to the expected value of the total.  
 

56 Bins 
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Restraint status for occupants 8 or older was based on documentation of seat belt or child 
restraint use as detailed in Section 2.5.5. Occupants younger than age 8 were categorized as 
restrained, for the purpose of this reweighting step, if they were documented in an age-
appropriate child restraint based on the recommendations on NHTSA’s safercar.gov website.2 
This categorization allowed binary classification of restraint use for children, without the need to 
define different categories of restraint use for different age groups. The few cases where children 
were documented in seats recommended for younger age groups were also categorized as 
restrained. Children who were unrestrained or in restraint systems inappropriate for their age 
group were categorized as unrestrained for the purposes of reweighting. This categorization did 
not account for the potentially substantial proportion of children who were in improperly used 
but age-appropriate restraints in either GES, FARS or CDS. These children were combined with 
restrained cases, solely for the purpose of re-weighting. 
 
For each non-fatal bin in Table 1, a weighting factor (WFb) was calculated, where “b” identified 
the bin. Each WFb was a ratio of the weighted number of cases in the bin among the NASS GES 
cases in the reweighting dataset divided by the weighted number of NASS CDS cases in the bin 
from the source dataset. Correspondingly for each fatal bin “b” in Table 1, a weighting factor 
(WFb) was calculated as a ratio of the number of cases in the bin among the FARS cases in the 
reweighting dataset divided by the weighted number of NASS CDS cases in the bin from the 
source dataset.  
  
The NASS-assigned weight (NASS CDS variable name: RATWGT) in each individual case in 
the NASS CDS source dataset was multiplied by the applicable weighting factor (WFb) and 
divided by 12 so that the resulting aggregate dataset represented an annual average over the 12-
year period (Equation (1)).  

 
 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅×𝑅𝑅𝑊𝑊𝑏𝑏

12
 (1) 

 
where: 

Weightretro is the case’s weight in the baseline retrospective dataset, 
RATWGT is the NASS CDS-assigned case weight, and 

WFb is the weight factor for the bin assigned to the case. 

 

 
Thus, the resulting weighted number of occupant cases in each non-fatal bin in the retrospective 
dataset was equal to the total average annual number of such cases in NASS GES between 2004 
to 2015. Similarly, the weighted number of occupant cases in each fatal bin in the retrospective 
dataset was equal to the average annual number of such cases in each bin in FARS between 2004 
and 2015.  
 
It should be noted that there are limitations associated with applying the KABCO-AIS 
conversion to the GES reweighting dataset that is intended to account for the cases that were 
excluded from the source NASS CDS dataset because of missing AIS codes. Specifically, 
applying the conversion method could bias injury severity distribution in the reweighted dataset. 

                                                 
2 While child restraint type was available for all crash years in NASS CDS, it was not available in NASS GES and 
FARS until 2013. Therefore, for the purposes of reweighting, children under age 8 in the FARS and GES cases 
documented in any child restraint were categorized as restrained prior to crash year 2013.  
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An exploratory study3 showed that a shift in injury severity distribution can be introduced as a 
result of the difference in the severity distribution among the AIS-coded cases used to develop 
the conversion tables and the severity distribution of cases without AIS codes, even among cases 
with the same KABCO score. However, based on that exploratory study, the error introduced 
with this reweighting step is less than the error that would be expected if no adjustment were 
made to account for exclusion of cases without AIS codes.  

2.3.2 Adjustment for Over-Reporting of Belt Use 
The final step in the development of the retrospective dataset was to adjust for the over-reporting 
of belt use in NASS CDS cases that results from police over-reporting belt use. The over-
reporting of belt use in police reports has been attributed to reliance on occupant-reported use 
with negligible use of EDR (event data recorder) data in 2015 and earlier (Kahane, 2018). In the 
model, no change or adjustment was made to occupant cases where the occupant was coded as 
unbelted, or to rear-seat occupant cases.4 Front-seat occupant cases coded as belted were each 
divided into two pseudo-cases5: a belted pseudo-case with all case characteristics identical to the 
original case and an unbelted pseudo-case with only the belt-use variable modified. The case 
weight of the original (parent) case was divided between the two pseudo-cases, proportional to 
the probability that cases coded as belted were indeed belted, based on estimated over-reporting 
rates for belt use in CDS. Note that this adjustment accounted for under-reporting in the original 
2004 to 2015 NASS CDS cases, and does not reflect the likelihood of under-reporting in the 
projection years 2020 to 2030.  

                                                 
3 The KABCO-AIS injury-severity conversion tables were developed by Blincoe et al. based on NASS CDS cases 
that had both the police-reported KABCO score and NASS-documented AIS codes. An exploratory analysis was 
performed to confirm for each possible KABCO score that the injury severity among NASS CDS with AIS codes 
was representative of all NASS CDS cases with that KABCO. The exploratory analysis used the Treatment-
Mortality variable (CDS variable name TREATMNT) in NASS CDS cases from 2003-2015. Although the 
Treatment-Mortality variable provides less detail than AIS codes, it identifies occupants who were transported to the 
hospital and occupants who received no treatment, which can be used as surrogate variables for estimated injury 
severity. In cases in the analysis that were coded as KABCO=A (incapacitating) or B (non-incapacitating), injury 
severity appeared to be worse in cases where AIS was coded, based on higher rates of hospitalization in AIS-coded 
cases than in cases with missing AIS codes. In contrast, for cases coded with KABCO=C (possible injury) or O (no 
injury), injury severity appeared to be lower in AIS-coded cases than in cases with missing AIS codes, based on 
rates of “No Treatment” being higher among cases where AIS was coded. In the context of the model, the KABCO-
AIS conversion tables are used to reweight the AIS-coded NASS CDS cases in the model to match the injury-
severity distribution in KABCO-coded-NASS GES cases. This reweighting step is intended, in part, to make up for 
exclusion of cases without AIS codes among the NASS CDS source cases in the model. However, the biases at each 
KABCO level in the conversion tables could be expected to lead to shifts in the injury severity distribution in the 
reweighted model datasets. The severity distribution among cases corresponding to KABCO A and B scores may be 
shifted toward more serious injuries while the severity distribution among cases corresponding to KABCO C and O 
scores may be shifted toward lower-severity injuries. In other words, there may be an overall tendency to increase 
the relative weight of the most severe and least severe cases in the model dataset. 
4 In NOPUS, rear seat belt use rates are actually higher than rates in crash data, suggesting that rear seat belt use is not 
over-reported in crash data (Kahane, 2017).  
5 A pseudo-case is essentially the offspring of a case in the source dataset. Pseudo-cases have many of the same 
characteristics of the original (parent) case, but the case weight and parameters are adjusted to reflect a modeled 
prediction about how the case would be different in the future. Typically, a parent case is divided into multiple pseudo-
cases, with the parent case’s weight divided among the pseudo-cases proportionally to the expected frequency of each 
possible outcome. 
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The over-reporting rate for belt use in non-fatal cases without EDR data6 was drawn from a 
study of 2002 to 2008 NASS CDS driver cases (Kahane, 2018). Using cases where EDR data 
was available but did not appear to have been used to determine CDS belt use, it was found that 
20 percent of MAIS 2+ CDS non-fatal belted cases were coded as unbelted in EDR data. 
Similarly, 19 percent of MAIS 0-1 CDS coded belted cases were coded as unbelted in EDR data. 
In the absence of over-reporting data for right front passengers, an estimate of 20 percent over-
reporting was applied in the projection model to all belted front-seat occupants. This adjustment 
was made by applying 80 percent of the parent case weight to the belted pseudo-case, and 20 
percent of the parent case weight to the pseudo-case with restraint status adjusted to unbelted. 
 
The over-reporting rate for fatal cases was estimated using data from FARS in the same study 
used for estimating over-reporting in non-fatal cases (Kahane, 2018), which showed that 11 
percent of fatal drivers coded as belted were unbelted. Therefore, all belted occupants who were 
fatally injured in the original retrospective dataset were split into two pseudo-cases: a belted 
pseudo-case with 89 percent of the weight of the parent case and an unbelted pseudo-case with 
11 percent of the weight of the parent case. In the absence of data specific to passengers, these 
weights were applied to occupants in all front-seat positions. 
 
The decision to adjust cases for belt use over-reporting after reweighting with GES was based on 
the understanding that belt use is also over-reported in GES. Since no data was available to 
adjust for this over-reporting in GES, the uncorrected CDS data was weighted with uncorrected 
GES data before applying the belt use adjustment to the reweighted CDS cases. The model and 
its input files were coded so that the under-reporting rate can be varied, or even set to zero, to 
explore its effect. 

2.3.3 Extrapolation to Include More Minor Cases  
NASS CDS has proportionally fewer low-severity occupant cases than occur in real-world 
crashes. This exclusion of lower-severity crashes from NASS CDS has likely led to an 
underestimate of the number of low AIS injuries, such as whiplash-associated disorder and mild 
traumatic brain injury. Undercounting of low-severity cases may also have led to an overestimate 
of overall injury rates since exclusion of non-injury cases reduces the denominator in injury rate 
estimates.  
 
Reasons for this under-representation of low-severity cases in NASS CDS include the following: 
 

(1) Exclusion of crashes in non-towed vehicles: CDS was focused on higher-severity crashes 
as reflected in the case selection criteria, including that at least one CDS vehicle must be 
towed from the scene. Additionally, occupant injury data were not collected for 
occupants in passenger vehicles that were coded as not towed from the scene due to 
damage, so even if these occupants were included in CDS, they were not included in the 
projection model.  

                                                 
6 For future applications of this model, EDR data should be evaluated for the cases in the model to determine belt use 
from available case data where possible. 
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(2) Under-reporting of low-severity crashes to police: CDS and GES are both limited to 
police-reported crashes, and lower-severity crashes are less likely to be reported to police 
than higher-severity crashes. 

 
Procedures for extrapolating from CDS and GES data to upweight lower injury-severity cases to 
address the two issues above were coded into the model. Although these procedures were coded 
so that they can be turned off and analysis can be performed only on occupants in CDS-eligible 
occupant cases, the default was to apply these low-severity upweighting procedures.  
 
The exclusion of occupants in non-towed vehicles was addressed by the reweighting procedures 
in Section 2.3.1, which reweight the cases in the CDS source dataset using counts of GES case 
occupants in towed and non-towed vehicles. If the optional adjustment of low-severity crashes is 
turned off, then this reweighting step uses only GES occupants in towed vehicles. 
 
To address the under-reporting of lower-severity cases to police in the projection model, 
adjustments were made directly to the GES case dataset used for reweighting. This procedure is 
summarized below and illustrated in Figure 2.  
 
The frequency of under-reporting to police in crashes by injury severity was estimated by 
Blincoe et al. (2015). Although the motivation for Blincoe’s estimate was related to the 
calculation of crash costs, the results apply to other applications where under-reporting rates by 
severity are needed. Among PDO crashes, which are crashes with property damage only, it was 
estimated that 60 percent are not reported to police. In crashes with injuries, the percentage of 
occupants who were in crashes that were not reported to police was estimated as a function of 
occupant injury severity (Table 2). It was assumed for the projection model, as it was in 
Blincoe’s study, that GES crashes were representative of police-reported crashes. Therefore, 
when non-fatal GES cases were binned into the categories in Table 1 using this procedure, case 
weights were upweighted to account for the under-reporting rates in Table 2.  
 
When binning GES occupants from PDO crashes, the case weights of all occupants in PDO 
crashes were multiplied by a factor of 2.50 (100/40) to upweight the 40 percent of PDO crashes 
that are reported to police to correct for the 60 percent of PDO crashes that typically go 
unreported. For GES injury crashes, i.e., crashes where there was at least one injured occupant, 
weight multipliers were calculated as a function of MAIS injury severity. As such, the weight 
multiplier was applied during the conversion of each case’s KABCO score to MAIS. For 
example, without the extrapolation procedures to include more minor cases, the case weight of a 
non-fatal GES occupant with a given KABCO severity would be distributed in bins 
proportionally to the probability that the case injury severity was MAIS 0-1, MAIS 2, or MAIS 
3-6. Using the extrapolation procedures, the proportional case weight was multiplied by the 
weight multiplier for the corresponding MAIS level. For example, without the unreported-case 
correction procedures the case weight of a towed (CDS-eligible) KABCO=A case would have 
been apportioned so that 61.58 percent of the case weight would be in the non-fatal MAIS=0-1 
bin, 19.24 percent in the non-fatal MAIS 2 bin, and 18.74 percent in the non-fatal MAIS 3-6 bin 
(per Table C-1 in Blincoe’s cost study). With the unreported-case correction procedures, 85.49 
percent of the case weight would be added to the MAIS 0-1 bin, 24.05 percent to the MAIS 2 
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bin, and 19.24 percent to the MAIS 3-6 bin.7 These numbers add up to greater than 100 percent 
because the proportional distribution of the case weight into bins and the upweighting of the 
lower-severity cases was done in a single step.  

Table 2. Calculation of reweighting value to adjust for under-reporting to police 
(based on Table 1-3 in Blincoe et al. (2015)) 

 
 

Unreported to Police 
(%) 

(Blincoe et al., 2015) 

Reported to 
Police (%) 

Weight Multiplier 
�

𝟏𝟏𝟏𝟏𝟏𝟏
% 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑹𝑹𝑹𝑹 𝑷𝑷𝑹𝑹𝑷𝑷𝑷𝑷𝑷𝑷𝑹𝑹� 

By Crash PDO 
Crashes 60 40 2.50 

By 
Occupant 

MAIS 08 53.1 46.9 2.13 
MAIS 1 25.4 74.6 1.34 
MAIS 2 19.9 80.1 1.25 
MAIS 3 4.3 95.7 1.04 

MAIS 4+ 0 100 1.00* 
MAIS 5 0 100 1.00* 

* Note that a weight multiplier of 1.00 indicates no adjustment. 
 
In optional versions of the model that exclude this extrapolation, the upweighting of cases to 
account for the exclusion of non-towed crashes is also suppressed by using only GES cases in 
towed vehicles for the reweighting procedures explained in Section 2.3.1.  

2.4 Development of the Stepping-Stone Dataset 
The case-by-case adjustment of occupant cases from the original source dataset to represent 
predicted outcome in crashes in the future was accomplished by a sequence of modifications to 
each case weight and outcome. The first modifications to each case’s weight were made in the 
development of the stepping-stone dataset. The stepping-stone dataset is the foundational dataset 
to which all population trends and safety countermeasures will later be applied. A separate 
stepping-stone dataset was developed for the 2020, 2025, and 2030 projections, serving as the 
first incremental step for each projection model. These stepping-stone datasets do not represent 
crash counts or outcomes in any time period, historical or predicted. They are simply interim 
datasets that have undergone the initial adjustments needed to use them to project 2020, 2025, 
and 2030 crashes. Development of the stepping-stone dataset for each of the projection models is 
described in the following sections. 
 
In the development of the stepping-stone dataset, cases involving occupants in vehicles of model 
years earlier than 2005 were treated separately from occupants in newer model-year vehicles. 
These groups of cases will be referred to as MY<2005 cases and MY2005+ cases throughout this 
report. The reason for treating occupants in early model vehicles differently in the model was 
                                                 
7 Using AIS 2 as an example, the 19.24% of KABCO = A cases expected to correspond to MAIS 2 injury severity 
are multiplied by the 1.25 multiplier from Table 2 to correct for under-reporting of MAIS 2 cases by police. The 
product (24.05%) is the proportion of the case weight in each KABCO = A case added to the MAIS 2 bin illustrated 
in Table 1.  
8 In this reweighting procedure, MAIS 0 occupants are uninjured occupants in crashes where at least one occupant 
was injured. 
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linked to one of the basic concepts of the model, that each case can be adjusted to reflect how the 
outcome would vary as a result of vehicle improvements. The model makes adjustments to case 
outcomes based on every vehicle countermeasure and design change that has been introduced or 
become more common since the model year of the case occupant’s vehicle. That concept 
requires that even relatively old countermeasures (like electronic stability control) be developed 
and incorporated in the model to account for the fact that many of the vehicles in the source 
dataset were not equipped with countermeasures that have since become standard equipment. 
However, for the earliest-model year vehicles among the source cases, there was simply not 
enough information available to effectively “adjust” these cases so that outcome would reliably 
match what would be expected among newer vehicles on the road in 2020 to 2030. The decision 
to treat cases in older model-year vehicles separately allows these cases to be retained in the 
model. These cases still represent older model-year vehicles, without needing to apply very old 
countermeasures, such as the improvements made to frontal air bags in the late 1990’s and early 
2000’s. As result of this 2005 MY cutoff, vehicle-based countermeasures and improvements that 
were largely implemented by MY 2005 did not need to be included in the model. MY 2005 was 
selected as a threshold because it retains enough newer-model year cases from the source dataset 
for making projections, while still ensuring that major earlier vehicle improvements like 
improved frontal air bags were already fully phased in for the majority of the cases used in those 
projections. 
 
The MY<2005 occupant cases represent occupants still expected to be in pre-2005 model year 
vehicles in the projection models, i.e., occupants in vehicles that will be more than 15, 20, or 25 
years old in 2020, 2025, and 2030, respectively. As discussed in detail below, these MY<2005 
cases will be downweighted to reflect their decreasing prevalence in the fleet and will also be 
subjected to trends and countermeasures that would affect occupants in these older vehicles. 
However, vehicle-based countermeasures that would only be expected to be installed in newer 
vehicles were not applied to the MY<2005 cases, since these occupants still represented 
occupants in MY<2005 vehicles in the projection datasets. For example, occupants in older MY 
vehicles would be affected by the increasing prevalence of infrastructure countermeasures, like 
cable median barriers, but not by vehicle-based countermeasures, such as improved occupant 
protection or crash avoidance countermeasures.  
 
The adjustments made to cases in the retrospective datasets to produce each stepping-stone 
dataset were as follows: 
 
1. Cases involving occupants in MY 2005 and newer vehicles were separated from those in 

earlier-model year vehicles and the two groups of cases were reweighted separately to reflect 
the distribution of cases by the occupant characteristics in Table 1 (restraint use, injury 
severity, driver/passenger status, and age) as determined using occupants in NASS GES and 
FARS cases from 2013 to 2015. The MY<2005 cases were reweighted using GES and 
FARS cases from older vehicles (16+ y.o. at the time of the crash) and the MY2005+ cases 
were reweighted using GES and FARS cases from newer vehicles (e.g., 0-15 y.o. at the time 
of the crash for the 2020 projection). 

2. The MY<2005 subset and the MY2005+ subset of occupant cases were each reweighted so 
that they represented the appropriate proportion of older vehicles (MY<2005) and newer 
vehicles (MY2005+) expected in the fleet in the targeted projection year (2020, 2025, or 
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2030). This step upweighted cases in newer model-year vehicles and downweighted cases in 
older model-year vehicles. 

3. As with the retrospective dataset, a model option is available to upweight lower-severity 
cases to account for under-reporting of lower-severity crashes to police. The default setting 
in the model is to apply this optional step. In runs of the model when this step is turned 
“off,” the GES cases used for the reweighting in step 1 are limited to occupants in vehicles 
that were towed from the scene. 

4. The weights of belted and unbelted cases were adjusted to address belt use over-reporting in 
the source NASS CDS and GES datasets.  

 
Figure 3 illustrates the development of the stepping-stone dataset for the 2020 projection. The 
following section is a discussion of the details and rationale for each step in the development of 
the 2020, 2025, and 2030 stepping-stone datasets. 
 

 
Figure 3. Overview of the development of the stepping-stone dataset for 2020 

(Bold text indicates values that vary for 2025 and 2030 versions of this flow chart) 

2.4.1 Separation of Occupant Cases by Vehicle Model Year 
The stepping-stone dataset is a composite of two subsets of cases that were treated separately in 
the model.  
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(1) MY2005+: Occupants in MY 2005 and newer vehicles 
(2) MY<2005: Occupants in vehicles older than MY 2005 

 
The rationale for this separation, and the selection of MY 2005 as a threshold, is discussed in 
more detail in Section 2.4. 
 
The MY2005+ dataset was used to build projection datasets representing all occupant crash 
exposures in MY2005+ vehicles in the future. The MY2005+ subset of occupant cases was 
subjected to all steps of the projection model, making adjustments for expected improvements in 
future vehicles as well as for predicted infrastructure improvements and for expected shifts in the 
population and in vehicle types on the road. After application of the model, the vehicles in 
MY2005+ cases did not represent vehicles of the model year or vehicle age of the original source 
cases because these cases had been adjusted to represent vehicles of the model year distributions 
on the road in the targeted projection year.  
 
In contrast, the MY<2005 subset of occupant cases were used to represent all occupant crash 
exposures in the future in MY<2005 vehicles. Since vehicles from this era are still expected to be 
on the road in 2020 to 2030, these cases were retained in the dataset but downweighted to reflect 
their decreasing frequency on the road and in crashes in the future. A case in a MY<2005 vehicle 
retained all the characteristics of the vehicle in the source case, including the original model 
year. However, since these early model year vehicles still on the road in 2020 to 2030 will not be 
equipped with any additional vehicle technologies that were introduced after MY 2005, these 
MY<2005 cases were not subjected to any adjustments associated with vehicle-based 
improvements to the case vehicle. They were, however, adjusted to account for predicted 
improvements in infrastructure and for trends in population composition and behavior. The 
MY<2005 cases were also adjusted to account for crash avoidance technology in other vehicles.9  
 
These two subsets (MY<2005 and MY2005+) were combined into stepping-stone datasets that 
served as the foundations for the models predicting 2020, 2025, and 2030 crash outcomes. 
Separate stepping-stone datasets were developed for each of these projection years since the 
weighted proportion of occupants in vehicles from model years before and after MY 2005 varied 
in each of these projection years.  

2.4.2 Reweighting the MY2005+ Subset of the Stepping-Stone Dataset 
All cases involving occupants in MY2005+ vehicles in the NASS CDS source dataset were 
reweighted using data from 2013 to 2015 NASS GES and FARS using the weighting bins in 
Table 1. The weighting procedures were similar to those applied to the retrospective dataset 
(described in Section 2.3.1) except that 3-year NASS GES and FARS datasets were used instead 
of the 11-year GES and FARS datasets used for the retrospective analysis. As such, the weight in 
each case in the NASS CDS source dataset represented a 3-year total after being reweighted 

                                                 
9 For example, if a MY<2005 vehicle was rear-ended by a MY2005+ vehicle, this crash could potentially be 
prevented in the future by technology such as automatic emergency braking in the striking vehicle. In that case, the 
case weight of occupants in the MY<2005 vehicle was adjusted to account for the probability that AEB in the 
striking vehicle could have prevented the entire crash.  
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using the applicable weighting factors, and thus was divided by three to represent average annual 
numbers for 2013 to 2015.  
 
Reweighting using 2013 to 2015 forced the stepping-stone cases to match the distribution of 
recent U.S. crash occupants in terms of age, restraint use and injury severity. Additionally, more 
than half of the occupants in the 2013 to 2015 GES reweighting dataset were in MY2005+ 
vehicles making it more compatible with the MY2005+ source dataset than the 2004 to 2015 
FARS/GES dataset used to reweight the retrospective dataset. However, since the crash 
characteristics of occupants in newer and older vehicles are expected to vary, the GES and FARS 
cases used for reweighting the MY2005+ CDS cases included only occupant cases in the 
corresponding vehicle age-range in each projection dataset. The reweighting data for MY2005+ 
cases in the 2020 projection were therefore limited to GES and FARS occupants in vehicles 0 to 
15 years old. Similarly, the reweighting data for the 2025 and 2030 projections were limited to 
GES and FARS occupants in vehicles 0 to 20 and 0 to 25 years old, respectively, since the 
MY2005+ cases in the stepping-stone datasets were reweighted and adjusted to represent all 
crashes in MY2005+ vehicles in those projection years. 

2.4.3 Reweighting the MY<2005 Subset of the Stepping-Stone Dataset  
 As with the MY2005+ subset of the stepping-stone dataset, occupants in vehicles earlier than 
MY 2005 were also reweighted using data from 2013 to 2015 NASS GES and FARS. 
Ultimately, these MY<2005 cases represented vehicles greater than 15 years old in projections 
since a MY 2004 vehicle would be 16 years old in 2020 and 26 years old in 2030. Since case 
characteristics including restraint use, occupant age, and injury severity likely vary with vehicle 
age, only crashes involving older vehicles (16 years and older) were included in reweighting 
cases by these characteristics in this subset of the stepping-stone dataset. Accordingly, the NASS 
GES and FARS cases used to reweight MY<2005 cases in the source dataset were limited to 
GES and FARS occupants in vehicles older than 15 years at the time of the crash.  
 
It is noted that the 2009 change in CDS data collection methods that resulted in exclusion of 
occupants in vehicles 10 years old or older at the time of the crash means that more of these 
MY<2005 cases came from case years prior to 2009 than from 2009 and later. This bias was not 
expected to have a major effect on results, given that the distribution of cases by model year was 
balanced in the projected models as explained in Section 2.4.4.  

2.4.4 Combined Stepping-Stone Dataset (MY2005+ and MY<2005) 
In the targeted projection years from 2020 to 2030, occupants in vehicles with model year earlier 
than 2005 will make up a shrinking proportion of cases. The decreasing proportion of MY<2005 
cases expected in the future was incorporated by proportionally downweighting cases from the 
MY<2005 subset and upweighting cases from the MY2005+ subset in each of the stepping-stone 
datasets for 2020, 2025, and 2030. 
 
The proportion of occupants exposed to potential crashes in 2020, 2025, and 2030 who will be in 
MY<2005 vehicles was estimated using vehicle age distribution among crash occupants in 
historical data. Vehicle age at time of crash was determined for all NASS GES occupant cases in 
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CDS-eligible vehicles between 2006 to 200810 to estimate the historical weighted distribution of 
vehicle age among occupants in passenger vehicle crashes (Appendix A). Based on this historical 
data, it was estimated that among occupants expected to be exposed to potential crashes in 2020, 
7.5 percent would be in vehicles older than 15 years. Therefore, all cases in the MY<2005 subset 
were reweighted so that they accounted for a total of 7.5 percent of the total number of weighted 
occupants in the 2020 stepping-stone dataset. Correspondingly, all cases in the MY2005+ subset 
were reweighted to account for 92.5 percent of the total weighted number of occupants in the 
2020 stepping-stone dataset. The 2025 and 2030 stepping-stone datasets were constructed in the 
same manner, using the estimates that 1.8 percent and 0.6 percent of occupants exposed to 
potential crashes in 2025 and 2030 would be in vehicles older than MY 2005, respectively. 
Downweighting the MY<2005 cases was expected to lead to the under-representation in the 
projected datasets of cases with characteristics associated with occupants of older cars (including 
age, restraint use, and other socioeconomic and driving behavior factors that are not captured by 
case codes). This limitation is discussed in Section 4.2. 
 
The next reweighting step for the combined stepping-stone dataset for each of the targeted 
projection years was an adjustment to account for the under-representation of more minor cases 
because of crashes that are not reported to police. For model runs with this optional step turned 
“off” (as described in Section 2.3.3), the upweighting of cases to account for the exclusion of 
non-towed crashes was also suppressed by using only GES in towed vehicles for the reweighting 
procedures explained in Section 2.3.1.  
 
The final step in the development of the stepping-stone dataset was to adjust for the over-
reporting of belt use in NASS CDS cases. As in the same procedure applied to the retrospective 
dataset (see Section 2.3.2 for details), no change or adjustment was made to occupant cases 
where the occupant was documented as unbelted or was a rear-seat occupant. Occupant cases 
coded as “belted” were divided into two pseudo-cases: a belted pseudo-case with all case 
characteristics identical to the original case, and an unbelted case with only the belt-use variable 
modified. The case weight of the original (parent) case was divided between the two pseudo-
cases, proportional to the probability that cases coded as belted were indeed belted, based on 
estimated belt use over-reporting rates in CDS. Non-fatal belted cases were divided into belted 
and unbelted pseudo-cases with 80 percent and 20 percent of the parent case weight respectively. 
Fatal cases were divided into belted and unbelted pseudo-cases with 89 percent and 11 percent of 
the parent case weight respectively. Note that this adjustment accounts for under-reporting in the 
original 2004 to 2015 NASS CDS cases, and does not reflect the likelihood of under-reporting in 
the projection years from 2020 to 2030.  
 
The outputs of this step for the three projection years were the stepping-stone datasets, 
foundational sets of cases to which all components of the projections model would be applied. 
These stepping-stone datasets do not represent the actual number of crashes expected in the 
future year, since no adjustments have been made yet to account for expected occupant or 
vehicle trends or for safety countermeasures implemented since the year of the original case 
crash. However, the stepping-stone datasets are also not representative of crashes in a past or 

                                                 
10 This year range was selected because the model-year distribution among vehicles in crashes was affected in 
subsequent years by economic conditions starting in 2009 that had a substantial effect on the frequency of vehicles 
of the ages that corresponded to model years 2009 and 2010 in subsequent crash years. 
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current year, since the proportions of cases by vehicle model year have been manipulated to 
match future proportions. Therefore, the stepping-stone dataset for each projection model can 
only be considered as an incremental step to be used as input for the remaining stages of the 
model.  

2.5 Adjustment for Predicted Trends in Population and Vehicle Fleet 
After development of the stepping-stone dataset, the next round of adjustments made to case 
weights in the case-by-case methodology reflected expected shifts in the frequency of crash 
exposures among different occupant and vehicle groups based on the following predicted trends:  
 

• Shifting vehicle-type distribution in the fleet,  
• Shifting age demographics of occupants: 

o Effects of predicted population growth in the U.S. population by age group,  
o Effects of changes in licensure rate among age groups,  

• Economic trends, represented in this model by national unemployment rate, and 
• Shifting belt use and child restraint use. 

 
Each of these trends, and the information sources used to apply them in the model, will be 
discussed in the following sections. These anticipated trends were independent of any specific 
efforts to shift future proportions of factors such as vehicle type or restraint use: they simply 
represented the expected continued shift in these parameters based on historical data absent any 
specific additional countermeasures.  
 
The overall strategy for applying these trend projections was to reweight individual cases in 
order to: 
 

1. Adjust the proportion of occupant cases occurring in different vehicle types or under 
different restraint conditions. The case weight for cases involving characteristics that 
were expected to be more frequent in the future than in the stepping-stone year range 
(2013 to 2015) was upweighted, while case weight for cases involving characteristics that 
were expected to be less frequent in the future was downweighted. 

2. Adjust the absolute number of occupant cases in driver and passenger age-groups. 
This strategy resulted in an increase in the total number of occupants exposed to potential 
crashes proportional to a function of population growth, licensure rate changes, and 
economic trends in each age group. 

 
The trends in this section were applied independently, assuming no interactions among them. 
Specific strategies for application of these trends will be discussed in the following sections. 

2.5.1 Vehicle Type Trends 
Vehicle type trends were applied only to cases in the MY2005+ subset of each stepping-stone 
dataset, since these cases were intended to represent occupants in newer model-year vehicles in 
the future datasets. The proportions of different types of vehicles in MY<2005 cases were not 
adjusted, since these occupants were assumed in this model to remain in the same older model-
year vehicles and would not be affected by subsequent sales patterns. 
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For the application of predicted vehicle type trends, vehicles were classified using the NASS 
CDS body type, make, model and model year variables (variable names BODYTYPE, MAKE, 
MODEL, and MODELYR). Car-based SUVs, referred to in this report as CUVs, were identified 
based on the make, model, and model-year combinations listed in Appendix B.1.1 because they 
could not be identified using the body type variable in NASS CDS. The remainder of the vehicle 
type categories were defined using the body type variable, as shown in Table 3. In other words, if 
the vehicle fell in one of the make, model, and model-year combinations listed in Table 40 in 
Appendix B.1.1, then it was classified as a CUV; if it did not, it was classified based on the body 
type definition in Table 3. Vehicles coded with unknown body type (49) were classified as 
passenger cars.  
 
When classified for specific countermeasures by the broader categories of passenger cars and 
light trucks and vans, pickups, vans, and truck-based SUVs were classified as LTVs. Larger 
vehicles, such as cab-chassis based trucks, truck-based panel trucks, and light-truck based 
motorhomes were also included in the broader LTV category, but there was insufficient data to 
apply vehicle type trends to this “other light truck” group, so the proportion of these vehicles 
relative to other vehicle types was unchanged in the future dataset. The passenger car category 
included CUVs as well as cars. 

Table 3. Vehicle type classifications 
 PC/LTV Body Type (CDS variable name BODYTYPE) 
CUVs PC Identified by make, model, and model year in Appendix B.1.1 
Cars PC 1:13, 16, 17, 49 
Pickups LTV 30:33, 39 
Truck-based SUVs LTV 14, 15, 19, 45, 48 
Vans LTV 20:22, 24, 25, 28, 29 

 
As explained in detail in Appendix B.1, a projection of the shift in vehicle types exposed to 
crashes between the stepping-stone dataset and the projection years (2020, 2025, and 2030) was 
made based on: 
 

• historical year-by-year sales data from the Environmental Protection Agency (EPA, 
2015; EPA, 2019) adjusted for SUV sales data from NHTSA (Puckett & Kindelberger, 
2016),  

• predicted sales data in future years from the Energy Information Administration Annual 
Energy Outlook (EIA, 2017; EIA, 2018), and 

• estimated vehicle age distribution in future crashes. 
 
This calculation was made for vehicles of MY 2005 and later. The results showed that passenger 
cars were projected to make up 52.8 percent of passenger vehicle crash exposures in the 2013 to 
2015 stepping-stone period, but only 49.2 percent of passenger vehicle crash exposures in 2020 
and 44.5 percent in 2030.  
 
Adjustment factors for reweighting individual cases to account for shifting vehicle types were 
calculated to upweight cases that were expected to be more frequent in the future, and 
downweight cases that were expected to be less frequent. The adjustment factor model variable 
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AF was a multiplier, unique to each vehicle type in each future projection year, applied to the 
case weight for every case occupant in a given vehicle type in each stepping-stone dataset. 
 
Downweighting Adjustment Factors for vehicle types that were predicted to be less frequent in 
future crashes were calculated as a function of the proportion of potential occupant crash 
exposures in the given vehicle type in the stepping-stone dataset (Pstepping-stone) and in the target 
projection years (P2020, P2025, P2030). For example, the AF for reweighting all occupant cases in 
passenger cars in the 2030 projection model is shown in Equation (2).  

 
 𝐴𝐴𝐴𝐴(2030)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟 =  �

𝑃𝑃2030 
𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟

�
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟

 (2) 

where: 
AF is the downweighting adjustment factor for cases involving the given vehicle type, and 
P is the proportion of potential crash exposures for the vehicle type in a given year/range. 

  
Upweighting Adjustment Factors for vehicle types that were predicted to be more frequent in 
future crashes were calculated to ensure that the adjustment of the dataset for shifting vehicle 
types changed the proportions of different vehicle types in the dataset without changing the total 
weighted number of occupant crash exposures in the dataset. In other words, the case weight AF 
for vehicles expected to be more common in the future datasets was calculated in a manner that 
ensured that a decrease in the total weighted number of downweighted cases was matched by an 
increase of the same magnitude in the total weighted number of upweighted cases. Accordingly, 
the AFs calculated for each vehicle type to be upweighted were a function of results from the 
stepping-stone dataset, in contrast to the AF for vehicle types that were to be downweighted that 
were estimated based only on sales predictions and historical data.  
 
Both CUVs and truck-based SUVs are expected to increase in future crash exposures. First, the 
magnitude of this increase was calculated to ensure that the decrease in the total weighted 
number of downweighted cases was matched by an increase of the same magnitude in the total 
weighted number of upweighted cases. Then, the relative magnitude of the increase for each of 
the vehicle types expected to increase in future crash exposures was calculated. These 
calculations are included in Appendix B.1 for the current model.  
 
Note that for trends involving multiple categories to be upweighted (e.g., CUVs and truck-based 
SUVs) and multiple categories to be downweighted (e.g., cars, pickups, and vans) the procedure 
could have been applied in the opposite manner. The AF could have been calculated directly for 
the categories to be upweighted and then distributed proportionally for the categories to be 
downweighted. In this study, the decision to calculate the AF directly for the categories to be 
downweighted was arbitrary. The AFs developed instead based on direct calculation for the 
categories to be upweighted were only negligibly different.  
 
After application of the vehicle type trend, the number of occupant cases in the stepping-stone 
datasets was unchanged, but the proportion of occupants in particular vehicle types was adjusted. 
The absolute number of occupants was adjusted in the application of the next two trends 
(passenger and driver crash exposure), which were driven by population, licensure, and 
economic trends. 
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2.5.2 Passenger Crash Exposure: Population and Economic Trends 
It was expected that the future overall growth or reduction in the number of passengers in 
crashes, i.e., non-driver occupants, would vary with population size and economic trends. Farmer 
has previously shown a strong relationship between improving economic trends, reflected by 
falling unemployment rate, and increases in annual motor vehicle crash fatalities and vehicle 
miles traveled (Farmer, 2017a).  
 
For predicting future crash exposures for this model, the effects of population size and 
unemployment rate were initially compared with the effects of VMT for crash years 1995, 2001, 
and 2009, for which population, unemployment, and VMT data were available. This preliminary 
analysis was limited to these 3 years because VMT data from the National Highway Travel 
Survey were unavailable for other years in this range. Predictions based on these variables were 
developed using counts of passenger crash exposures from NASS GES in 1995, 2001, and 2009. 
That analysis showed that functions of population size and average national unemployment rates 
were better predictors of the number of passenger crash exposures in each age group than VMT. 
However, the use of those relationships for prediction of expected exposure rates in the future 
was limited by the age of the data and the suspicion that unemployment during some of those 
particular years may have disproportionately affected younger age groups. This potential skew 
made it questionable to apply the data to individual age groups for predictive purposes. 
 
Based on the results of this preliminary analysis, VMT was dropped from the analysis because it 
was a less effective predictor of passenger crash exposures. Without VMT, more years of data 
were available for using the remaining variables as crash exposure predictors. Regression 
analysis was performed to explore the use of population size, average unemployment rate across 
the labor force, and age-group-specific unemployment rates to predict the annual number of 
passenger crash exposures. Data for the regression analysis were drawn from the following 
sources for 2007 to 2015:  
 

• The number of passenger crash exposures in 2007 to 2015 came from NASS CDS-
eligible crashes in weighted NASS GES data. Note that this dataset was not the same one 
used for reweighting the projection model and did not exclude fatalities. 

• Annual population estimates by age group were drawn from census data and estimates 
(Census Bureau, 2014; Census Bureau, 2019a). 

• Historical unemployment rates were obtained from the Bureau of Labor (2018), and 
predicted future unemployment rates were estimated as in Farmer’s work (Farmer, 
2017a), applying an annual decline of 1.7 percent annually until 2024 based on estimates 
attributed to Byun and Nicholson in 2015. Rates were held constant after 2024, in the 
absence of long-term predictions. The 2020 spike in unemployment associated with the 
COVID-19 pandemic has not been addressed in the current version of the model. 
Potential future updates to the model to reflect unemployment and other effects of the 
pandemic on motor vehicle travel are discussed in Section 4.3. 

 
Regression analysis was performed for individual age groups, with the number of passenger 
crash exposures in each year (from 2007 to 2015) as the outcome variable. Predictor variables 
included census-reported population in that age group, and several functions of average U.S. 
unemployment rate in the workforce and unemployment rates specific to each age group. Since 
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the relationship between crash exposures and unemployment rate was unknown, the 
mathematical functions explored for each age group included exponential and logarithmic 
functions of unemployment rate, as well as unemployment rate raised to the power of 0.5 or 2. 
The following criteria were used to select regression models for the prediction of passenger crash 
exposures in each age group based on the 2007 to 2015 data: 
 

• The F-test of overall significance must have a p-value of less than 0.05 to conclude that 
the model was a better fit than an intercept-only model. 

• The adjusted R2 value for each model that adds variables beyond age-group population 
size must be higher than the adjusted R2 value for the population-only model.  

• The model coefficient for population size must be positive because of the expectation that 
crash exposures would be expected to increase, rather than decrease, with population 
growth. 

• Where multiple models met these criteria for an age group, the model with the highest 
adjusted R2 value was selected. 

 
There were only two age groups where a regression equation including unemployment rate met 
the criteria above: ages 55-64 and 65-74. The regression equations developed for these age 
groups are shown in Equation (3). Fit statistics for these regression equations are summarized in 
Table 4. 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃55−64 =  −33563 + 0.0028 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃55−64 − 1127341 × (𝑈𝑈𝑈𝑈55−64)2 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃65−74 =  −27487 + .00195 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃65−74 − 8823.55 × 𝑃𝑃𝑃𝑃(𝑈𝑈𝑈𝑈65−74) 
(3) 

where: 
Pass. crashes are the predicted number of passengers exposed to crashes in a given age group, 

Population is the number of people in the U.S. population in the given age group, and 
UR is the age-group-specific unemployment rate. 

 
Table 4. Fit statistics for regression equations to predict the number of passengers in crashes 

 F value Pr>F R2 Adjusted R2 

Age 55-64 13.03 0.0066 0.8129 0.7505 
Age 65-74 128.10 <0.001 0.9771 0.9695 

 
The regression equations above were used to predict passenger crash exposures for occupants in 
the 55-64 and 65-74 age groups in 2020, 2025, and 2030. Predicted population for those 
projection years were drawn from Census Bureau projections  (Census Bureau 2014; Census 
Bureau 2019a). Predicted unemployment rates in those projection years were estimated based on 
adjustment of current rates from the Bureau of Labor (2018) assuming an annual decline of 1.7 
percent annually until 2024. The decline rate was applied to each age group individually and 
rates were held constant after 2024. 
 
For all other age groups, not specified in the regression equations above, the number of 
passengers exposed to potential crashes in target years 2020, 2025, and 2030 was estimated 
relative to the number of passenger crash exposures in 2013 to 2015, proportional to the change 
in population in each age group during the same time frame. For these age groups, 
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unemployment rate did not improve the prediction of the number of crash-exposed passengers in 
the regression analysis of 2007 to 2015 data. An example of this calculation for passenger crash 
exposures in 2020 is shown in Equation (4).  
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟 𝑠𝑠𝑟𝑟𝑟𝑟𝑔𝑔𝑠𝑠 =  (𝐶𝐶𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃 2013 − 15)𝑃𝑃𝑠𝑠𝑟𝑟 𝑠𝑠𝑟𝑟𝑟𝑟𝑔𝑔𝑠𝑠 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃 2020𝑃𝑃𝑠𝑠𝑟𝑟 𝑠𝑠𝑟𝑟𝑟𝑟𝑔𝑔𝑠𝑠

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃 2013 − 15𝑃𝑃𝑠𝑠𝑟𝑟 𝑠𝑠𝑟𝑟𝑟𝑟𝑔𝑔𝑠𝑠
 (4) 

where: 
Pass. Crashes are predicted passenger crash exposures in the given age group in 2020, 

Crashes 2013–15 is the average annual number of passengers in the age group in CDS-eligible 
crashes in GES in that year range, 

Population 2013-15 is the average annual census-estimated count of people in United States in the age 
group in that year range, and 

Population 2020 is the census-estimated predicted population in the age group in 2020. 
 

Figure 4 shows the historical annual estimates, along with the projected future estimates for all 
age groups. The resulting estimated number of annual passenger crash exposures in each age 
group for 2013 to 2015, as well as for each target year, are also tabulated in Table 5.  
 

 
Figure 4. Historical and predicted numbers of passenger crash exposures by age group 

Solid lines: historical, from GES 
Dotted lines: from regression equations 

No line (points only): estimated based on population growth estimates (“pop est only”) 
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Table 5. Estimated annual number of passenger crash exposures 

Age 2013-2015 2020 2025 2030 
0-14 419,711 423,260 429,289 437,901 

15-19 226,559 225,727 227,561 225,856 
20-24 173,231 167,333 167,469 169,153 
25-34 184,416 198,661 201,470 199,368 
35-44 110,684 116,340 125,208 133,016 
45-54 101,884 95,661 95,272 100,380 
55-64 77,477 85,540 81,622 76,070 
65-74 50,949 67,564 76,003 80,164 
75+ 38,745 45,661 56,335 68,166 

 
The number of passenger crash exposures in the 2020, 2025, and 2030 projection datasets was 
adjusted to account for population growth and economic trends by multiplying the case weight of 
each non-driver occupant in the datasets by an adjustment factor, AF. The AF for cases involving 
passengers (Table 6) were calculated by age group as a ratio of: 
 

• The projected number of passenger crash exposures in the age group in the target 
projection year (Table 5, columns for 2020, 2025, 2030), over  

• The average annual estimated number of passenger crash exposures in the age group 
between 2013-2015 (Table 5, column for 2013 to 2015). 

 
Table 6. Case weight AF for passenger crash exposures 

Age 2020 2025 2030 
0-14 1.008 1.023 1.043 

15-19 0.996 1.004 0.997 
20-24 0.966 0.967 0.976 
25-34 1.077 1.092 1.081 
35-44 1.051 1.131 1.202 
45-54 0.939 0.935 0.985 
55-64 1.1041 1.0535 0.9818 
65-74 1.3261 1.4918 1.5734 
75+ 1.178 1.454 1.759 

 
After application of these population and economic trends to passengers in the stepping-stone 
dataset for each of the three projection models, the stepping-stone datasets had higher total 
weighted numbers of crash-exposed passengers than they did prior to this step as a result of 
predicted overall population growth and decreasing unemployment. However, some age groups 
were expected to have fewer passenger crash exposures in the future because the aging 
population was expected to decrease the size of some age groups. As noted previously, the 
calculated AF does not account for the effects of the COVID-19 pandemic on crash exposures. 
Please refer to Section 4.3 for a discussion on plans to incorporate the effects of the pandemic 
into the model. 
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2.5.3 Driver Crash Exposure: Population, Licensing and Economic Trends 
Where expected growth in the number of passengers was based on the number of people in the 
U.S. population in each age group as well as on economic trends, growth in the number of 
drivers was estimated based on the expected number of licensed drivers in each age group along 
with economic trends. As with passengers, these trends were applied to all drivers in the 
stepping-stone datasets for 2020, 2025, and 2030, including those in the MY<2005 and 
MY2005+ subsets of cases.  
 
The application of these trends to the model relied on the premise that the annual number of 
driver crash exposures for each age group varies with: 
 

• the number of licensed drivers in that age group, where the number of estimated drivers 
in each age group was estimated from the product of population size and licensure rate, 
and 

• the unemployment rate for that age group.  
 
It was determined for the purposes of the projection model that the number of drivers in crashes 
in each age group can be best estimated for each year as a function of the number of licensed 
drivers in each age group and the natural logarithm of the unemployment rate in the given age 
group and year (Equation (5)). These relationships, developed for each age group using 
regression analysis of historical data from 2007 to 2015, were found to be better predictors in 
that regression analysis of the number of driver crash exposures over time by age group than 
alternative combinations explored.11 Fit statistics for these regression equations are summarized 
in Table 7. 
 
The 2007 to 2015 data used to develop these regression equations and the predicted values for 
projecting to 2020, 2025, and 2030 came from the following sources: 
 

• The number of driver crash exposures in 2007 to 2015 came from CDS-eligible crashes 
in weighted NASS GES data. 

• Historical licensure rates were obtained from Federal Highway Administration data from 
2007 to 2015 (FHWA, 2014; FHWA, 2016). Licensure rates for 2020, 2025, and 2030 
were estimated by extrapolating a linear best fit trend from the 2007 to 2015 data for each 
age group. These trends reflected falling rates of youth licensure and increasing rates 
among some older age groups. 

• Population estimates were drawn from census estimates and projections (Census Bureau, 
2014; Census Bureau, 2019a). 

• Historical unemployment rates were obtained from the Bureau of Labor (2018), and 
predicted future unemployment rates were estimated as in Farmer’s work, estimating an 
annual decline of 1.7 percent annually until 2024. Rates were held constant after 2024, in 

                                                 
11 Alternative regression variables explored included year, multiple functions of unemployment and employment 
rates, including rate, exponential functions of rate, rate squared, and square root of rate in each age group for crash 
years 2007-2015. Separate empirical analysis of crash years 1996, 2001, and 2009 was also performed to evaluate 
predictive potential of vehicle miles traveled, the number of licensed drivers in the population, as well as 
mathematical functions of unemployment rate that included the natural logarithm of unemployment rate, exponential 
functions of unemployment rate, and unemployment rate raised to powers ranging from 0.1 to 2. 
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the absence of other predictions. As with passenger crash exposures, no adjustments have 
been made in the current model to account for the effects of the COVID-19 pandemic on 
unemployment.  

 
𝐷𝐷𝑐𝑐𝑊𝑊𝐷𝐷𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃16−19

=  −395571 + 0.06661 × 𝐿𝐿𝑊𝑊𝑐𝑐𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝐿𝐿16−19 − 212811 × 𝑃𝑃𝑃𝑃(𝑈𝑈𝑈𝑈16−19) 

𝐷𝐷𝑐𝑐𝑊𝑊𝐷𝐷𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃20−24
=  −294764 + 0.03117 × 𝐿𝐿𝑊𝑊𝑐𝑐𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝐿𝐿20−24 − 147296 × 𝑃𝑃𝑃𝑃(𝑈𝑈𝑈𝑈20−24) 

𝐷𝐷𝑐𝑐𝑊𝑊𝐷𝐷𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃25−34
=  −918027 + 0.03117 × 𝐿𝐿𝑊𝑊𝑐𝑐𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝐿𝐿25−34 − 179182 × 𝑃𝑃𝑃𝑃(𝑈𝑈𝑈𝑈25−34) 

𝐷𝐷𝑐𝑐𝑊𝑊𝐷𝐷𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃35−44
=  314376 − 0.00119 × 𝐿𝐿𝑊𝑊𝑐𝑐𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝐿𝐿35−44 − 103997 × 𝑃𝑃𝑃𝑃(𝑈𝑈𝑈𝑈35−44) 

𝐷𝐷𝑐𝑐𝑊𝑊𝐷𝐷𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃45−54
=  667507 − 0.0085 × 𝐿𝐿𝑊𝑊𝑐𝑐𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝐿𝐿45−54 − 60498 × 𝑃𝑃𝑃𝑃(𝑈𝑈𝑈𝑈45−54) 

𝐷𝐷𝑐𝑐𝑊𝑊𝐷𝐷𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃55−64
=  −381481 + 0.01414 × 𝐿𝐿𝑊𝑊𝑐𝑐𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝐿𝐿55−64 − 81880 × 𝑃𝑃𝑃𝑃(𝑈𝑈𝑈𝑈55−64) 

𝐷𝐷𝑐𝑐𝑊𝑊𝐷𝐷𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃65−74
=  −96364 + 0.0945 × 𝐿𝐿𝑊𝑊𝑐𝑐𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝐿𝐿65−74 − 27049 × 𝑃𝑃𝑃𝑃(𝑈𝑈𝑈𝑈65−74) 

𝐷𝐷𝑐𝑐𝑊𝑊𝐷𝐷𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃75+ = 5536 + 0.00561 × 𝐿𝐿𝑊𝑊𝑐𝑐𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝐿𝐿75+ − 15081 × 𝑃𝑃𝑃𝑃(𝑈𝑈𝑈𝑈75+) 

 

 

(5) 

 

where: 
Driver crashes are the predicted number of drivers exposed to crashes in a given age group, 

Licensed is the predicted number of licensed drivers in the given age group, and 
UR is the predicted unemployment rate in the given age group. 

 
Table 7. Fit statistics for regression equations to predict the number of drivers in crashes 

 F value Pr>F R2 Adjusted R2 

Age 16-19 58.33 0.0001 0.9511 0.9348 
Age 20-24 9.65 0.0133 0.7629 0.6839 
Age 25-34 31.92 0.0006 0.9141 0.8855 
Age 35-44 9.08 0.0153 0.7516 0.6688 
Age 45-54 17.98 0.0029 0.8570 0.8093 
Age 55-64 37.59 0.0004 0.9261 0.9014 
Age 65-74 27.63 0.0009 0.9021 0.8694 
Age 75+ 2.85 0.1352 0.4868 0.3157 

 
Figure 5 shows the annual number of driver crash exposures for 2007 to 2015, as well as the 
estimated number calculated from the regression relationships for 2007 to 2015 and for the target 
projection years 2020, 2025, and 2030 for each age group. The values for the average number of 
driver crash exposures in 2013 to 2015 and the projections are shown in Table 8. 
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Figure 5. Historical and predicted numbers of driver crash exposures by age group 

Solid lines: historical, from GES 
Dotted lines: from regression equations 

 
Table 8. Estimated annual number of driver crash exposures 

Age 2013-2015 2020 2025 2030 
15-19 411,656 459,622 445,571 410,728 
20-24 582,738 623,164 630,218 631,972 
25-34 821,227 976,027 1,003,884 986,135 
35-44 583,251 623,566 627,495 624,724 
45-54 527,548 563,676 570,099 554,369 
55-64 399,480 468,568 453,760 426,385 
65-74 214,297 279,593 316,226 334,612 
75+ 133,646 152,535 178,938 206,644 

 
Since the stepping-stone dataset had already been reweighted using 2013 to 2015 GES and 
FARS data, the AF for driver cases projected to 2020, 2025, and 2030 was calculated for each 
age group as the ratio of: 
 

• The projected number of driver crash exposures for the age group in the target projection 
year (Table 8, columns for 2020, 2025, or 2030), over  

• The average annual estimated number of driver crash exposures in the age group between 
2013 to 2015 (Table 8, column for 2013-2015). 

 
The resulting AF by age group are shown in Table 9.  
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After application of population and licensing trends to drivers in the stepping-stone dataset for 
each of the three projection models, cases in most age groups in the stepping-stone datasets had 
higher total weighted numbers of crash-exposed drivers than they did prior to this step as a result 
of predicted reduction of the unemployment rate and predicted increases in the number of 
licensed drivers in most age groups in the United States.  

Table 9. Case weight AF for driver crash exposures  

 Case Weight Adjustment Factors 
Age 2020 2025 2030 

16-19 1.1165 1.0824 0.9977 
20-24 1.0694 1.0815 1.0845 
25-34 1.1885 1.2224 1.2008 
35-44 1.0691 1.0759 1.0711 
45-54 1.0685 1.0807 1.0508 
55-64 1.1729 1.1359 1.0673 
65-74 1.3047 1.4756 1.5614 
75+ 1.1413 1.3389 1.5462 

2.5.4 Belt Use Trends 
Belt use trends were applied to all occupants eight years and older in the stepping-stone datasets, 
including those in the MY<2005 and MY2005+ subsets of cases. Since it was difficult to 
effectively estimate specific changes in injury severity and pattern among occupants who switch 
from being unbelted to being belted, expected increases in belt use were incorporated by 
upweighting cases involving belted occupants and downweighting cases involving unbelted 
occupants. The predicted trends in belt use were applied in a manner that did not change the total 
weighted number of occupants in the stepping-stone dataset from the number that resulted from 
applying population-growth, licensing, and economic trends to the dataset: the reduction in the 
total weighted number of cases from downweighting unbelted cases was equal to the increase in 
the total weighted number of cases from upweighting belted cases using belt use trends. 
 
Predictions of belt use in the future were made with the “conversion rate” methods summarized 
below. Calculations are provided in more detail in Appendix B.2. For most occupant groups, 
year-to-year belt use increases and the annual conversion rate was calculated as the percentage of 
seat belt non-users who were “converted” to belt users in the subsequent year. When Blincoe and 
Shankar originally estimated future conversion rates based on historical annual conversion rates 
from 1998 to 2005, they estimated that the annual average 8 percent conversion rate would 
continue in the future (Blincoe and Shankar, 2007). However, they also performed estimates on a 
more conservative future rate of 4 percent, i.e., half of the historical rate. These conversion rate 
predictions were subsequently evaluated against belt use rates estimated in the following years in 
the National Occupant Protection Use Survey (Pickrell and Li, 2016). That comparison to 
NOPUS data showed that the more conservative predicted conversion rate of half the historical 
conversion rate was closer to the actual average annual conversion rate of 4.3 percent between 
2005 to 2015 across all seat positions. 
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Based on these methods used previously, recent historical conversion rates were estimated 
(Table 54) from 2008 to 2016, the years for which weighted, disaggregated NOPUS data was 
available (Table 52). The future annual conversion rate was predicted to be half (50%) of this 
recent historical rate based on previous trends. 
 
Belt use rates were estimated separately for front- and rear-seat occupants using conversion rate 
analysis based on observed use rates in NOPUS, with subsequent adjustment to account for 
lower rates of expected belt use in potentially fatal crashes. These procedures are summarized in 
this section. 
 
Estimation of belt use rates based on observed use in NOPUS: Future belt use rates were 
estimated based on historical belt use and conversion rates for front-seat and rear-seat occupants. 
Front-seat use rates and conversion rates were further disaggregated by vehicle type because belt 
use rates for front-seat occupants vary more among different vehicle types than by other 
parameters. Rear-seat use rates varied much more by age than by vehicle type, so use rates and 
conversion rates for rear seat occupants were disaggregated by age group. These occupant 
parameters were selected because belt use rates vary substantially among these groups. Absent 
disaggregation by these characteristics, reweighting cases to reflect increasing overall belt use 
would unintentionally skew the frequency of other characteristics in the dataset. For example, 
without disaggregation, global upweighting of all belted cases would artificially inflate the 
percentages of passenger car occupants and front-seat occupants and reduce the percentages of 
pickup occupants and rear-seat occupants in the predicted datasets. Historical levels of belt use 
for the subgroups used in this study were drawn from NOPUS data and disaggregated by seat 
position, vehicle type, and age group.12 See Appendix B.2 for a summary of these values and 
resulting estimates of conversion rates. 
 
The resulting annual predictions of belt non-use are summarized in Table 10 for front-seat 
occupants (Figure 6) and rear-seat occupants (Figure 7). These predictions reflect the expected 
reduction in belt non-users for most occupant groups in the future. The only group with a 
negative average conversion rate, suggesting an expected increase in future non-users, were rear-
seat occupants 70 years and older. Review of this sub-group of NOPUS results revealed that 
historical non-use rates estimated from 2008 to 2016 were based on substantially fewer raw case 
occupants than in other age groups. Non-use rates for the rear-seat 70+ age group in Table 8 
were estimated using an average of only 36 unbelted observations per year, compared to over 
200 unbelted observations in all other age groups. Because of the relatively small dataset for 70 
or older rear-seat occupants, combined with the unlikely estimate of future increases in belt non-
use in this group, it was determined that there was insufficient information to estimate 
conversion rate accurately for this group. Therefore, the rate of belt non-use for 70 or older rear-
seat occupants was coded to remain at 2016 rates in the future, instead of using the rates shown 
in Table 8. Thus, the conversion rate for this age group of rear-seat occupants was set to 0, and 
the AF for unrestrained occupants in this category was 1.0. This strategy was equivalent to 
simply not estimating any subsequent change in belt use rates for this small group of occupants, 
in the absence of reliable information about conversion rates. 
 
                                                 
12 Rajesh Subramanian, chief, Mathematical Analysis Division, National Center for Statistics and Analysis, NHTSA, 
personal communication. June 6, 2017. 



33 

 
Figure 6. Rates of belt non-use among front-seat occupants 

(Based on NOPUS data up to 2016 and predicted subsequently based on 50 percent of historical conversion rates) 
 

 
Figure 7. Rates of belt non-use among rear-seat occupants 

Data for 70+ not relied on for model  
(Based on NOPUS data up to 2016 and predicted subsequently based on 50 percent of historical conversion rates) 
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Table 10. Historical and predicted future rates of belt non-use based on observation studies 

Front Seat 
Age 

group Vehicle type 2013-2015 
(Average*) 2020 2025 2030 

All ages 
Passenger Car 11.1% 7.8% 6.7% 5.7% 
Van/SUV 10.3% 6.7% 5.6% 4.8% 
Pickup Trucks 21.3% 15.2% 13.4% 11.8% 

Rear Seat 
Age 

group Vehicle type 2013-2015 
(Average*) 2020 2025 2030 

Age 8-15 

All Vehicle 
Types 

17.8% 13.2% 12.2% 11.3% 
Age 16-24 27.3% 21.1% 20.3% 19.5% 
Age 25-69 32.8% 23.0% 22.7% 22.4% 
Age 70+** 18.7% 26.5%** 28.2%** 29.9%** 

*Simple average of three individual annual rates. 
**Estimated conversion rates shown here for rear-seat occupants 70 or older were deemed to be unreliable 
and not used for the projection model. 
 

Adjustment for lower rates of expected belt use in potentially fatal crashes: Belt use in 
potentially fatal crashes has been reported to be lower than observed belt use in studies like 
NOPUS (Wang & Blincoe, 2003). Therefore, predictions of future belt use in potentially fatal 
crashes were made by applying Wang and Blincoe’s belt use regression model (Equation (6)) to 
the overall belt use predictions in Table 10. The resulting predicted future rates of belt non-use 
among potentially fatal crashes are shown in Table 11.  
 
 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑈𝑈𝑃𝑃𝑊𝑊𝑃𝑃𝑊𝑊𝑃𝑃 = 0.47249 ∗ 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑈𝑈𝑃𝑃𝑊𝑊𝑂𝑂𝑂𝑂𝑃𝑃

2 + 0.43751 ∗ 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑈𝑈𝑃𝑃𝑊𝑊𝑂𝑂𝑂𝑂𝑃𝑃 (6) 
where: 

BeltUsePFC is the estimated belt use rate in potentially fatal crashes, and 
BeltUseObs is the estimated overall use rate based on observation studies, calculated as (1-(Belt Non-

Use Rate)) from Table 10. 
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Table 11. Historical and predicted future rates of belt non-use in potentially fatal cases 

Front Seat 
 
  2013-2015 

(Average*) 2020 2025 2030 

All 
ages 

Passenger Car 23.7% 19.5% 18.0% 16.7% 
Van/SUV 22.7% 18.0% 16.6% 15.5% 
Pickup Trucks 36.4% 28.9% 26.7% 24.6% 

Rear Seat 
 
  2013-2015 

(Average*) 2020 2025 2030 

All 
vehicle 
types 

Age 8-15 32.1% 26.4% 25.1% 24.0% 
Age 16-24 43.2% 36.1% 35.1% 34.2% 
Age 25-69 49.3% 38.3% 37.9% 37.6% 
Age 70+** 33.2% 42.3%** 44.2%** 46.1%** 

*Simple average of three individual annual rates. 
** Estimated conversion rates shown here for rear-seat occupants 70 or older were deemed to be 
unreliable and not used for the projection model. 

 
Reweighting of belted and unbelted cases in the projection model was done separately for 
occupants categorized as being in potentially fatal crashes and occupants in all other crashes. In 
previous work (Wang & Blincoe, 2003), the number of potentially fatal cases was quantified as a 
function of the number of actual fatal cases, belt use rates in those cases, and the estimated life-
saving effectiveness of belt use. This process essentially estimates how many belted occupants 
would have been expected to die had they not been belted. To apply the different AF associated 
with expected belt use rates for potentially fatal crashes versus for all crashes in the projection 
model, specific cases must be identified as potentially fatal. In the absence of a definitive method 
for identifying individuals who might have been at risk of fatality had they not been belted, the 
occurrence of a fatality in a given crash was used as a measure of potential severity for the case 
occupant. All occupants in a crash with at least one fatality were categorized as being in a 
potentially fatal crash.  
 
The importance of reweighting cases for belt use in potentially fatal cases separately from other 
cases was related to two issues: 
 
1. It was expected that the conversion rate among occupants in potentially fatal crashes was 

lower than for other occupants, so this step prevents overly optimistic estimates of the benefit 
of belt use increases on the most serious cases. 

2. Downweighting of unbelted cases performed to reflect increased belt use was matched by 
upweighting of belted cases to ensure that reweighting for belt use does not change the total 
weighted number of occupants. If cases of all severity are reweighted for belt use as a single 
group, downweighting of unbelted potentially fatal cases would be matched by upweighting 
all cases, including low-severity cases. By reweighting potentially fatal cases separately, 
downweighting of unbelted potentially fatal cases was matched only by upweighting of 
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belted potentially fatal cases, avoiding an unintentional decrease in the most severe crashes 
in the projection dataset. 

 
Reweighting of unbelted cases in crashes with no fatalities: Calculation of AF for cases 
involving unbelted occupants in the stepping-stone dataset required estimates of belt use among 
the defined NOPUS occupant groups for the stepping-stone year range of 2013 to 2015 and for 
the projection years 2020, 2025, and 2030. From the data shown in Figure 6 and Figure 7 (and 
tabulated in Table 10), the AF for each unbelted occupant in a given vehicle type/seat row/age 
bin was calculated as a ratio of the predicted belt non-use rate in the targeted projection year 
(2020, 2025, or 2030) divided by the averaged belt non-use rate in 2013 to 2015 for that bin. If, 
for example, the rate of belt non-use was expected to be 30 percent lower in the targeted 
projection year than in 2013 to 2015 in a given bin, then each case involving an unbelted 
occupant in that bin in the stepping-stone dataset would be multiplied by an AF of 0.7, reflecting 
the expected decreasing frequency of such cases. No AF was applied to case occupants in the 
70+ age group in the rear seat, because there was insufficient information to estimate conversion 
rate for this group as explained on page 44, resulting in no change in the proportion of unbelted 
individuals in this group in the future. The AF applied to the unbelted cases in each vehicle 
type/seat row/age bin for the 2020, 2025, and 2030 projections was shown in Table 12. Details 
on these calculations can be found in Appendix B.2. 
 
Reweighting of belted cases in crashes with no fatalities: The AF for cases involving belted 
occupants were calculated to ensure that the total weighted number of cases in each vehicle 
type/seat row/age bin in crashes with no fatalities did not change, but that only the proportion of 
belted occupants in the bin changed. In other words, the case weight AF for cases involving 
belted occupants in crashes with no fatalities were determined to guarantee that a decrease in the 
total weighted number of unbelted cases in these no-fatality crashes was matched by an increase 
of the same magnitude in the total weighted number of belted cases in no-fatality crashes. 
Accordingly, the AF calculated for each category of belted cases was a function of results from 
the stepping-stone dataset, in contrast to the AF for unbelted occupants that were estimated 
solely on belt use projections in the population.  
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Table 12. Case weight AF for cases involving unbelted occupants in no-fatality crashes 

Front Seat (All Ages) 
Occupants in: 2020 2025 2030 

Passenger cars 0.707 0.601 0.511 
Vans and SUVs 0.650 0.547 0.461 
Pickup trucks 0.712 0.627 0.552 

 
Rear Seat (All Vehicle Types) 

Occupant age: 2020 2025 2030 
8-15 0.741 0.685 0.634 

16-24 0.773 0.743 0.715 
25-69 0.700 0.691 0.682 
70+ 1.000 1.000 1.000 

 
After application of belt use trends to the stepping-stone dataset for each of the three projection 
models, each vehicle type/seat row/age bin of the stepping-stone dataset had the same total 
weighted number of crash occupants in no-fatality crashes as it did before application of this 
predicted trend. However, the proportion of occupants in each bin who were belted had been 
shifted to reflect predicted changes in belt use for each category of occupant.  
 
Reweighting of unbelted and belted cases in crashes with at least one fatality: The process 
above, for reweighting unbelted and belted cases in crashes with no fatalities, was repeated for 
all occupants in crashes with at least one fatality. The resulting AF are shown in Table 13. The 
only difference was that instead of using the belt use predictions based on observational studies 
in Table 10, the AF was based on belt use predictions adjusted for potentially fatal crashes in 
Table 11. In this way, unbelted cases in crashes with at least one fatality were downweighted at a 
rate that reflected that conversion to belt use may occur more slowly among occupants in 
potentially fatal crashes than was reflected in observational studies. This procedure also ensured 
that the downweighting of unbelted cases in life-threatening crashes was matched by 
upweighting of belted cases in crashes of corresponding severity. 
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Table 13. Case weight AF for cases involving unbelted occupants in crashes with at least one fatality 

Front Seat (All Ages) 
Occupants in: 2020 2025 2030 

Passenger cars 0.823 0.758 0.702 
Vans and SUVs 0.793 0.732 0.680 
Pickup trucks 0.795 0.733 0.677 

 
Rear Seat (All Vehicle Types) 

Occupant age: 2020 2025 2030 
8-15 0.823 0.784 0.748 
16-24 0.835 0.812 0.791 
25-69 0.776 0.769 0.763 
70+ 1.000 1.000 1.000 

2.5.5 Child Restraint Trends 
Child restraint use trends were applied to all occupants 7 or younger in both the MY<2005 and 
MY2005+ subsets of cases in the stepping-stone datasets.  
 
Child restraint use in the future was predicted based on historical conversion rates, calculated 
from usage rates documented in the annual National Survey of the Use of Booster Seats 
(Glassbrenner & Ye, 2007; Glassbrenner & Ye, 2008; Pickrell & Ye, 2010; Pickrell & Ye, 2013; 
Pickrell & Choi, 2014; Li et al., 2016). NSUBS is an observational survey in which child age is 
estimated and restraint use documented in one of the following categories: 
 

• Rear-facing child safety seat 
• Forward-facing child safety seat 
• Booster seat 
• Seat belt 
• No restraint involved.  

 
The NSUBS results were sorted in the projection model to estimate the proportion of children 7 
or younger who were in age-appropriate restraints. Very broadly, children in NSUBS who were 
documented as using the type of restraint recommended at NHTSA’s safercar.gov website for 
their observed age group were defined in the projection model as appropriately restrained. 
Children who appeared to have prematurely graduated to restraint systems inappropriate for their 
estimated age were defined as inappropriately restrained. All unrestrained children were also 
included in the inappropriate restraint group for the purpose of reweighting. The very few 
NSUBS cases where children were restrained in a seat recommended for a younger age group 
(less than 2% of cases for any age group or study year) were binned with the appropriately 
restrained group. Notably, the classification of child occupants with appropriate or inappropriate 
restraint reflects only the type of restraint used relative to the recommended restraint for the age 
group. This binary variable for appropriate restraint use does not capture any other characteristic 
of restraint use, such as whether the restraint was properly used, because there was insufficient 
information available to identify misuse in the source cases and reweighting datasets, or to 
predict how misuse would be likely to change in the future. Therefore, the large percentage of 
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Based on NSUBS data up to 2015 and predicted subsequently based on 50 percent of historical conversion rates 
 

children documented in age-appropriate restraints may not be in ideally installed restraints in 
spite of the terminology that classified them as appropriately restrained for the purpose of 
reweighting. However, since the cases were not specifically reweighted according to proper 
restraint use, there should still be a similar proportion of cases in improperly used restraints 
before and after reweighting for child restraint trends. Additionally, it must be emphasized that 
grouping together unrestrained children and children who are not in age-appropriate restraints for 
the purpose of reweighting does not assume that outcomes would be similar for these groups. It 
simply means that the same reweighting factors were applied to these cases so that the frequency 
of these cases would be reduced at the same rate in projections made by the model.  
 
As with the application of belt use trends, expected future increases in age-appropriate child 
restraint use were incorporated into the model by upweighting cases involving appropriate 
restraint and downweighting inappropriate restraint cases in each child age group in the stepping-
stone dataset. Similarly, in age groups where analysis suggested future decreases in age-
appropriate child restraint use compared to the stepping-stone dataset period, cases with 
appropriate restraint use were downweighted and cases with inappropriate restraint use were 
upweighted. 
 
Predictions of inappropriate child restraint use rates by age group in the future were made using 
conversion rate methods. As year-to-year age-appropriate child restraint use increases, the annual 
conversion rate in each age group was calculated as the percentage of inappropriately restrained 
children in each age group who were “converted” to appropriate restraint use in the subsequent 
year. For adults, annual belt use conversion rates have been close to half of historical average 
annual belt use conversion rates (see Section 2.5.4). In the absence of similar estimates for 
children, this same estimate was applied to child restraint use, with future annual conversion 
rates to appropriate child restraint predicted as 50 percent of historical conversion rates from 
2006 to 2015 (the years for which NSUBS data was available). 
  
The resulting annual predictions of inappropriate child restraint use (Figure 8) reflect the 
expected reduction in inappropriate child restraint use in the future.  
 

 
Figure 8. Rates of inappropriate restraint by age group 

0%

10%

20%

30%

40%

50%

60%

2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

Less than 1 1-3 4-7



40 

Reweighting of inappropriate restraint use cases: The AF to be applied to the case weight for 
each stepping-stone case involving a child who was not in an age-appropriate restraint was 
calculated as a ratio of the predicted inappropriate-restraint rate in the targeted projection year 
divided by the inappropriate-restraint rate in 2013 to 2015 for that category. The resulting case-
reweighting AF for each age group in the projection years 2020, 2025, and 2030 are shown in 
Table 14. Source data for the AF calculations can be found in Appendix B.3. For occupants in 
the two older age groups, the AF was greater than one for some projection years, meaning that 
inappropriately restrained children in these age groups in the stepping-stone datasets were 
upweighted in the projection datasets. Although this result was counterintuitive given the overall 
downward trend in rates of inappropriate use shown in Figure 8, it was consistent with the fact 
that predicted rates of inappropriate restraint in 2020 (for example) are higher than the average 
documented NSUBS rates from 2013 to 2015.  

Table 14. Case weight AF by age group for cases involving inappropriately restrained children 

Age Group 2020 2025 2030 
Less than 1 year 0.976 0.839 0.720 
1-3 years 1.096 1.063 1.031 
4-7 years 1.036 1.014 0.993 

 
Reweighting of appropriate restraint use cases: The AF for cases involving children who were 
documented in age-appropriate restraints were calculated to ensure that the total weighted 
number of cases in each age group did not change, but that only the proportion of appropriately 
restrained children in the age group changed. In other words, the case weight AF for cases 
involving appropriately restrained children in an age group were determined to guarantee that a 
decrease (or increase) in the total weighted number of inappropriately restrained cases was 
matched by an increase (or decrease) of the same magnitude in the total weighted number of 
appropriately restrained cases within that age group. Accordingly, the AF calculated for each 
category of appropriately restrained cases were a function of results from the stepping-stone 
dataset, in contrast to the AF for inappropriately restrained children that are estimated solely on 
the basis of child restraint use projections in the population. The details of those calculations are 
included in Appendix B.3.  
 
After application of restraint use trends to children in the stepping-stone dataset for each of the 
three projection models, each age group under age 8 in the stepping-stone dataset had the same 
total weighted number of crash occupants as before application of this predicted trend. However, 
the proportion of occupants in each bin who were seated in appropriate restraints for their age 
group had shifted to reflect predicted increases (or decreases) in restraint use for each age group. 

2.6 Application of Safety Countermeasures 
While the incorporation of trends (described in Section 2.5) adjusts the number of occupants and 
vehicles with certain characteristics expected to be exposed to a potential crash in the future, the 
safety countermeasures in the model affect the likelihood that the crash would be prevented or 
the expected outcome would improve. Additionally, where trends were applied broadly to all 
cases with a given characteristic (e.g., by age group or vehicle type), countermeasures were 
applied on a case-by-case basis, with the adjustment depending on variables such as the model 
year of the occupant’s vehicle, the year the crash occurred, or specific characteristics of the 
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crash. Most countermeasures incorporated into the model to date had the potential to prevent the 
crash (e.g., crash avoidance, infrastructure or program countermeasures), reduce impact speed to 
mitigate the overall severity of the crash (crash mitigation countermeasures), or to reduce the 
severity of injuries sustained in the crash (crashworthiness and occupant protection 
countermeasures). However, the model can also apply the effects of changes expected to lead to 
increases in crashes or injuries (e.g., increases in maximum speed limits). All of the modeled 
changes are called countermeasures in the model, even those that reduce safety rather than 
improve it.  
 
For countermeasures where information was available to identify specific injuries that would be 
affected (e.g., burn injuries, or head injuries from specific intruding vehicle components), only 
those specific injuries were deleted or reduced in severity in the future projection versions of the 
case. For countermeasures where effectiveness was only known in terms of overall injury 
severity, all injuries at the given severity level in affected cases was modified in the projection 
versions of the case. For example, if effectiveness was reported for a given countermeasure 
relative to MAIS 3+ injury, all AIS 3+ injuries in a proportion of cases in the target population 
could be reduced in severity to AIS 2 injuries. 
 
Countermeasures can include vehicle-based technology and design enhancements, as well as 
nonvehicle-based infrastructure improvements (e.g., rumble strips) or safety programs (e.g., 
sobriety checks). While some safety countermeasures have been mandated by Federal Motor 
Vehicle Safety Standards, others have been encouraged through consumer test programs like the 
New Car Assessment Program or voluntary industry agreements, initiated through State 
programs or other agencies, or introduced independently by vehicle manufacturers. In this study, 
the term “countermeasure” covers all these diverse types of safety innovations, improvements, 
and interventions. 
 
The effectiveness of a countermeasure is the percentage reduction in the risk of a crash or injury 
with the countermeasure compared to without the countermeasure. In the case-by-case 
methodology, countermeasures were applied to each case in the trend-adjusted dataset (the 
dataset that remains after all trends have been applied). The estimated effectiveness for each 
countermeasure was applied to every case in the trend-adjusted dataset that was in the 
countermeasure’s defined target population. If different effectiveness values were available for 
subpopulations of the target population, these more specific effectiveness values were used. This 
best estimate of effectiveness for each individual occupant case was defined as the case-specific 
effectiveness (E). 
 
The effectiveness estimates used in the current projection model were drawn from NHTSA 
benefit analyses and from studies in the literature estimating the expected difference in outcome 
between a case with a given countermeasure and a case without the countermeasure. These 
analyses and studies varied in how effectiveness was reported, e.g., relative to the percentage of 
target population crashes prevented, relative to the percentage of target injuries or fatalities 
prevented, or relative to the percentage of injuries expected to trickle down to lower-severity 
injuries. Thus, the strategy for applying the effectiveness of different countermeasures to the 
model (e.g., deletion of cases in the projected cases versus modification of injuries in the 
projected cases) varied depending on the expected effect of each countermeasure. The strategies 
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for applying effectiveness and for estimating injury trickle down are described individually for 
each countermeasure in Appendices C-F for countermeasures applied in the evaluation model. 
These appendices also explain how the effectiveness estimates were made from existing data, 
with references to the source information used. The upcoming projection model results report 
that includes output for full runs of the model will include details for all additional 
countermeasures applied (Mallory et al., in press). 
 
Before being applied to cases in the model, case-specific countermeasure effectiveness needed to 
be adjusted to reflect that some cases in the retrospective dataset already had the countermeasure 
available and not all cases in the future will have the countermeasure available. This adjusted 
effectiveness (Eadj) was calculated individually for each case in the model based on the overall 
countermeasure effectiveness for the case’s target population and the availability of the 
countermeasure at the time of the original crash and in the projection year. For vehicle-based 
countermeasures, the availability of the countermeasure for a given case was estimated by the 
penetration into the fleet among vehicles exposed to crashes. For nonvehicle-based 
countermeasures, such as safety programs and infrastructure improvements, the availability of 
the countermeasure was estimated by its overall implementation rate. For simplicity, this 
parameter will be called “penetration” for all countermeasures in the model.  
 
The methods used to apply safety countermeasures to cases in the model are described in the 
following sections. Specifically: 
 

• Section 2.6.1 summarizes the penetration parameters needed for each countermeasure and 
how these were estimated for countermeasures in the model.  

• Section 2.6.2 describes the methods used to adjust the effectiveness estimates for each 
case based on the penetration of the countermeasure for the original NASS CDS case as 
well as for the projected future version of the case. 

• Section 2.6.3 summarizes the methods used to apply the adjusted effectiveness estimates 
to each case in the model to predict the frequency and outcome of such cases in the 
future.  

 
More detailed descriptions of the target population, effectiveness and penetration estimates for 
each countermeasure applied in the evaluation version of the model are provided in the 
countermeasure summaries appended to this report. 

2.6.1 Estimation of Countermeasure Penetration 
Three basic penetration parameters used in the application of each countermeasure to cases in the 
model are defined as follows: 
 
α: Penetration of a countermeasure among vehicles of the model year of the relevant vehicle for 
vehicle-based countermeasures, or in the crash year of the original case for nonvehicle-based 
countermeasures.  

• This parameter reflects the probability that a countermeasure was available to a crash 
occupant in the original case crash. For this model, it was typically estimated using 
penetration among vehicles sold by model year for vehicle-based countermeasures 
(such as forward collision warning technology or side air bags compliant with 
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FMVSS No. 214), or by crash year for nonvehicle-based countermeasures (such as 
red light cameras or changes in speed limits). For vehicle-based countermeasures, the 
relevant vehicle can be the occupant’s vehicle. For example, the occupant’s own 
vehicle would be the relevant vehicle for crash avoidance countermeasures if the 
occupant were in the striking vehicle in a rear impact. For other situations, the 
relevant vehicle was a partner vehicle in the crash (for example, if the occupant was 
in the struck vehicle in a rear impact crash). 

α′: Penetration of a countermeasure among cases that involve crashes or injuries that the 
countermeasure was intended to prevent.  

• This parameter accounts for the overall penetration of the countermeasure (α), but 
also for the decreased likelihood that an occupant who has the countermeasure 
available was likely to be involved in the targeted type of crash or sustain the targeted 
type of injury. For example, a vehicle in a rollover case was less likely to have been 
equipped with ESC than would be estimated using the ESC penetration rate for the 
vehicle’s model year. Thus, α′ was calculated as a function of α and case-specific 
effectiveness (E) and represents the probability that an occupant in the 
countermeasure target population in the original retrospective case already had the 
countermeasure. 

β: Penetration of a countermeasure among all occupants exposed to potential crashes in a target 
projection crash year.  

• For vehicle-based countermeasures, this parameter was calculated as a function of the 
penetration of the countermeasure in vehicles in each model year, and the relative 
frequency of each model year vehicle among occupant crashes in the future crash 
year. For nonvehicle-based countermeasures, this parameter was estimated using 
predicted future penetration by crash year. 

 
For all countermeasures in the model, the penetration parameter α must be estimated for the 
crash year or model years of the relevant vehicle in the original retrospective cases. The 
penetration parameter β must be estimated for the target projection crash years, including the 
evaluation year 2014, as well as the projection years 2020, 2025, and 2030.  
 
For a small number of countermeasures (e.g., side curtain air bags or conversion to roundabout 
intersections), the source case information can be used to determine if the countermeasure was 
available in a given occupant case so that α′ can be set to 0 or to 1. However, since for most 
countermeasures the presence of the countermeasure in the original crash cannot be determined 
from the NASS CDS variables, the probability that a countermeasure was present in a 
retrospective case (α′) needs to be estimated instead. Future penetration in target projection 
years, β, must be estimated for all countermeasures. 
 
Countermeasure penetration estimates were drawn from a variety of sources but were based on 
real-world data when available. When real-world data was not available, penetration was 
estimated from regulatory phase-in requirements, voluntary agreement targets, and estimates 
from literature and industry experts. For countermeasures where both real-world penetration data 
and regulatory phase-in requirements were known, actual compliance was substantially faster 
than required since manufacturers typically exceed the minimum phase-in requirements. 
Therefore, in FMVSS-required countermeasures where minimum regulatory phase-in 
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requirements were known but actual phase-in was unknown, penetration of the countermeasure 
was estimated assuming similar rates of early compliance as observed for other regulations. 
Penetration in the future was especially difficult to predict, necessitating use of predictions from 
multiple sources whenever available. For countermeasures included in the evaluation version of 
the model in this report, the data sources for penetration estimates are summarized with each 
countermeasure in its corresponding appendix.  

2.6.2 Application of Penetration to Case-by-Case Effectiveness 
In the case-by-case methodology, each occupant case in the model was modified for each target 
projection year to represent the likely change in frequency or outcome if the same potential crash 
exposure were to occur in the future crash year. This modification was based on the estimated 
case-specific effectiveness (E) for the countermeasure, but also on the likelihood that the 
countermeasure was present when the original crash occurred and the likelihood it would be 
present in the future projection year.  
 
Since effectiveness was a measure of the difference in safety between a crash exposure with a 
countermeasure and a crash exposure without the countermeasure, countermeasure effectiveness 
was effectively zero in the model for a retrospective case occupant who already had the 
countermeasure in the original crash since adding the countermeasure would make no change to 
the crash. Effectiveness was also effectively zero for a future projection case where the case 
occupant was still not expected to have the countermeasure.  
 
The penetration parameters that correspond to the penetration of the countermeasure among 
cases in the target population (α′) and among cases in the projection target year (βTY) were used 
to adjust the case-specific effectiveness in each weighted case in the model. This adjustment 
accounted for the fact that the countermeasure was not effective for the proportion of cases in 
which the countermeasure was already available in the original case and the proportion of cases 
which were still not expected to have the countermeasure in the future. Equations (7) and (8) 
show, in the simplest terms, how adjusted effectiveness (Eadj) in each case was calculated based 
on countermeasure penetration. For vehicle-based countermeasures, penetration in the original 
case-vehicle model year was needed (α′MY). For nonvehicle-based countermeasures, the 
penetration in the original crash year was needed (α′CY) instead. All countermeasures required 
estimated penetration in the target year for the projection (βTY).  

 
 

Vehicle-Based Countermeasures: 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐸𝐸 × (𝛽𝛽𝑅𝑅𝑇𝑇 −  𝛼𝛼′𝑀𝑀𝑇𝑇) (7) 
 

Nonvehicle-Based Countermeasures: 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐸𝐸 × (𝛽𝛽𝑅𝑅𝑇𝑇 −  𝛼𝛼′𝑃𝑃𝑇𝑇) (8) 
where: 

Eadj is the adjusted effectiveness for a countermeasure in a given case, 
E is the effectiveness of the countermeasure for that case’s target population, 

βTY is the penetration in the target year for the projection, and 
α′ is the penetration in the original vehicle model year or the crash year of the original case. 

 
The model can be used to explore a variety of hypothetical future countermeasure penetration 
scenarios by varying estimates of βTY. These scenarios can be used to explore the potential 



45 

effects of future penetration rates that are lower than expected or higher than expected for 
combinations of countermeasures. In the evaluation version of the model included in this 
methods report, the most realistic estimates of penetration were used for any countermeasure for 
which predictions were available. The methods used to estimate these parameters (α′ and βTY) are 
explained below, where βTY for the evaluation model represents countermeasure penetration in 
2014. For projection versions of the model, the target year can be set to 2020, 2025, or 2030. 
 
Probability of countermeasure presence in original retrospective case (α′): Estimation of the 
probability that a case in the target population for a countermeasure had the countermeasure 
available (α′) must account for the fact that a vehicle with a crash avoidance countermeasure 
available was less likely to have been involved in a crash than a vehicle without the 
countermeasure. Similarly, a case occupant with injuries in the target population for a 
crashworthiness countermeasure was less likely to have been equipped with the countermeasure. 
For example, the probability that an occupant with roof-crush injuries was in a vehicle compliant 
with the FMVSS No. 216 Roof Strength Upgrade (α′), was lower than the overall penetration of 
that countermeasure in the occupant’s vehicle model year (α). Therefore, α′, which was defined 
as the probability that a given countermeasure was present among all occupants exposed to 
potential crash/injury situations in the target population, was expected to be lower than α. 
 
The penetration of a given technology or countermeasure among cases in a countermeasure’s 
target population (α′) was estimated as a function of α, the penetration of the countermeasure 
among all potential crash exposures, and the effectiveness (E) of the countermeasure for the 
given case’s target population. This calculation relies on Bayes’ theorem (Equation (9)) and is 
shown in Equation (10). The calculation can be expressed in terms of the variables used in this 
study (Equation (11)). The risk of a given crash or injury without the countermeasure of interest 
is defined as R, so the probability of the given crash or injury with the countermeasure was (1-
E)R. The resulting relationship can be re-arranged and applied to estimates of penetration by 
model year for vehicle-based countermeasures (Equation (12)) or by crash year for nonvehicle-
based countermeasures (Equation (13)). 

 

 𝑃𝑃(𝐴𝐴|𝐵𝐵) =  
𝑃𝑃(𝐵𝐵|𝐴𝐴) × 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
 (9) 

 
𝛼𝛼′ =  

(𝑃𝑃(𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ 𝑊𝑊𝑃𝑃𝑖𝑖)|𝐶𝐶𝐶𝐶 𝑃𝑃𝑐𝑐𝑊𝑊𝑃𝑃𝑊𝑊𝑃𝑃𝑡𝑡) × 𝑃𝑃(𝐶𝐶𝐶𝐶 𝑃𝑃𝑐𝑐𝑊𝑊𝑃𝑃𝑊𝑊𝑃𝑃𝑡𝑡)
(𝑃𝑃(𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ 𝑊𝑊𝑃𝑃𝑖𝑖)|𝐶𝐶𝐶𝐶 𝑃𝑃𝑐𝑐𝑊𝑊𝑃𝑃𝑊𝑊𝑃𝑃𝑡𝑡) × 𝑃𝑃(𝐶𝐶𝐶𝐶 𝑃𝑃𝑐𝑐𝑊𝑊𝑃𝑃𝑊𝑊𝑃𝑃𝑡𝑡) +  (𝑃𝑃( 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ 𝑊𝑊𝑃𝑃𝑖𝑖)|∅𝐶𝐶𝐶𝐶 𝑃𝑃𝑐𝑐𝑊𝑊𝑃𝑃𝑊𝑊𝑃𝑃𝑡𝑡) × 𝑃𝑃(∅𝐶𝐶𝐶𝐶 𝑃𝑃𝑐𝑐𝑊𝑊𝑃𝑃𝑊𝑊𝑃𝑃𝑡𝑡) (10) 

where: 
P(CM present) and P(ØCM present) are probabilities that the countermeasure is present or not 

present, and 
P(crash inj|CM present) and P(crash inj|ØCM present) are probabilities that the given crash or injury 

would occur given that the countermeasure is present or not present. 
 

 𝛼𝛼′ =  
(1 − 𝐸𝐸) × 𝑈𝑈 × 𝛼𝛼

(1 − 𝐸𝐸) × 𝑈𝑈 × 𝛼𝛼 + 𝑈𝑈 × (1 − 𝛼𝛼) (11) 

where: 
R is the probability of the crash or injury occurring without the countermeasure 
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Vehicle-based countermeasures: 𝛼𝛼′𝑀𝑀𝑇𝑇 =  
𝛼𝛼𝑀𝑀𝑇𝑇 − 𝛼𝛼𝑀𝑀𝑇𝑇𝐸𝐸

1 − 𝛼𝛼𝑀𝑀𝑇𝑇𝐸𝐸
 (12) 

 

Nonvehicle-based countermeasures: 𝛼𝛼′𝑃𝑃𝑇𝑇 =  
𝛼𝛼𝑃𝑃𝑇𝑇 − 𝛼𝛼𝑃𝑃𝑇𝑇𝐸𝐸

1 − 𝛼𝛼𝑃𝑃𝑇𝑇𝐸𝐸
 (13) 

 
Probability of countermeasure for the future version of case in the target year (βTY): For 
nonvehicle-based countermeasures, such as infrastructure improvements or programs aimed at 
occupant behavior, the probability that the future version of a given case in the model would be 
expected to have the countermeasure was estimated directly from countermeasure penetration 
estimates for the target crash year (2020, 2025, or 2030). For example, penetration for 
intersection-specific countermeasures can be estimated as the percentage of intersections in the 
target population that are likely to be equipped with the given infrastructure feature in the target 
crash year. Those penetration estimates are needed for each of the target crash years for 
application of the countermeasure into the model.  
 
For vehicle-based countermeasures, future penetration in the target crash years was calculated 
from two estimated parameters: 
 

• The expected distribution of vehicle model year for occupants exposed to crashes in the 
target year (expressed as CMY, which was the percentage of occupants in crashes in the 
future target year expected to be in vehicles of the given model year), and 

• The estimated penetration rate of the countermeasure into the fleet for each model year 
(αMY).  

 
In theory, the product of those two percentages, summed across all model years up to the 
projection target year, was an estimate of the percentage of the fleet equipped with a given 
countermeasure in the projected crash-fleet in the target year. However, applying this concept to 
the projection model was complicated by the fact that cases involving vehicles of model year 
earlier than 2005 (MY<2005) were analyzed separately in the model, with no adjustment for 
countermeasures made in these older-vehicle cases. Therefore, the estimate of the proportion of 
the future fleet that would have each countermeasure in each projection target year (Overall βTY) 
was calculated only across model years 2005 and later (MY2005+), as shown in Equation (14). 
Values for αMY were estimated individually for each vehicle-based countermeasure. Values for 
CMY, the predicted percentage of all occupant crash exposures in MY2005+ vehicles in each 
model year, were estimated separately for each projection target year (2020, 2025, 2030) and are 
tabulated in Appendix A.  

 
 𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝛽𝛽𝑅𝑅𝑇𝑇 =  � 𝐶𝐶𝑀𝑀𝑇𝑇 × 𝛼𝛼𝑀𝑀𝑇𝑇

𝑅𝑅𝑇𝑇

𝑀𝑀𝑇𝑇=2005

 (14) 
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where: 
TY is the target year of the projection, 

Overall βTY is the proportion of the future fleet that would have the countermeasure in the given target 
year, and 

CMY is the percentage of occupants in crashes in the future target year expected to be in vehicles of the 
given model year. 

 
However, the equation above could lead to cases where the estimated Overall βTY was less than 
α′, which when applied to Equation (7) and Equation (8) results in a nonsensical estimate of 
adjusted effectiveness. For example, a 2015 model year vehicle in the trend-adjusted dataset 
might have an α′ near 100 percent if the countermeasure was required by FMVSS. However, by 
the crash year 2020, penetration of that countermeasure into the on-road fleet could still be 
substantially lower than 100 percent because of vehicles from model-years predating the 
introduction of the countermeasure. Therefore, rather than using Overall βTY for each 
countermeasure for each projection target year, βTY was estimated individually for each case-
vehicle model year from 2005 to 2015, for each of the projection target year models. This step 
provided a customized βTY for cases in the MY2005+ dataset, based on vehicle model year. This 
method guaranteed for every case in the model that the probability of having the countermeasure 
in the future was at least as great as the probability of having the countermeasure in the model 
year of the original case. 

For this individual estimation of βTY for each case-vehicle model year, intermediate calculations 
were performed to estimate the probabilities that a case with versus without the countermeasure 
in the original retrospective period (2005 to 2015) would have the countermeasure in the future 
version of the case in the projected target year. The probability that a case in the retrospective 
dataset with the countermeasure also had the countermeasure in the adjusted version of the case 
in the projected target year, defined as β*CM, was assumed to be 100 percent. The probability that 
cases in the retrospective dataset without the given countermeasure had the countermeasure in 
the projected target year was defined as β*NoCM. The value of β*NoCM was calculated so that the 
average penetration across all cases in the target year was, on aggregate, equal to the Overall 
βTY. The steps involved in that calculation are shown in Equations (15) and (16). 

 
 
 𝛽𝛽𝑃𝑃𝑀𝑀∗ (𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝛼𝛼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + 𝛽𝛽𝑁𝑁𝑟𝑟𝑃𝑃𝑀𝑀∗ (1 − 𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝛼𝛼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝛽𝛽𝑇𝑇𝑇𝑇 (15) 
 where:  

 𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝛼𝛼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  � 𝐶𝐶𝑀𝑀𝑇𝑇 × 𝛼𝛼𝑀𝑀𝑇𝑇

2015

𝑀𝑀𝑇𝑇=2005

 (16) 

and where: 
β*CM is the probability that a retrospective case with the countermeasure also had the countermeasure 

in the adjusted version of the case in the target projection year, and 
β*NOCM is the probability that a retrospective case without the countermeasure had the countermeasure 

in then adjusted version of the case in the target projection year. 
 

Since β*CM=100%, β*NoCM was estimated for each future target year by re-arranging the 
relationship in Equation (15) as shown in Equation (17). 
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 𝛽𝛽𝑁𝑁𝑟𝑟𝑃𝑃𝑀𝑀∗ =  
𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝛽𝛽𝑅𝑅𝑇𝑇 − 𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝛼𝛼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

1 − 𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝛼𝛼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 (17) 

Thus, βTY for a given case in the trend-adjusted dataset was calculated as a function of the 
penetration of a given countermeasure in the vehicle model year in the case and β*NoCM, which 
had a unique value for each projection target year (2020, 2025, and 2030). Therefore, every case 
in the dataset associated with a given model year of vehicle was assigned the same βTY for a 
countermeasure projected to a given target year (Equation (18)).  
 
 𝛽𝛽𝑅𝑅𝑇𝑇 =  (𝛼𝛼𝑀𝑀𝑇𝑇) + 𝛽𝛽𝑁𝑁𝑟𝑟𝑃𝑃𝑀𝑀∗ (1 − 𝛼𝛼𝑀𝑀𝑇𝑇) (18) 

All vehicle-based countermeasures implemented in the model to date have been implemented 
using Equations (7) and (18), with the exception of the update to FMVSS No. 214, NHTSA’s 
Side Impact Protection standard. In the case of the FMVSS No. 214 update, it was possible to 
make a broad assumption regarding whether individual cases in the trend-adjusted dataset were 
in vehicles compliant with the regulation, i.e., whether they had the countermeasure, using NASS 
CDS data on air bag deployment in the crash. For occupant cases in the trend-adjusted dataset 
documented with the countermeasure, case-specific effectiveness for this countermeasure was set 
to 0 since no improvement would be expected for this case in the projected target years. For 
occupant cases in the trend-adjusted dataset where side air bags were not present, or where it was 
unknown if they were present, the method described above in Equations (7) through (18) was 
modified as described in the appendix corresponding to the FMVSS No. 214 update. 
 
When the relevant vehicle was a partner vehicle rather than the occupant’s vehicle: For 
crashworthiness countermeasures, it was the likelihood that an occupant’s own vehicle was 
equipped with a given countermeasure that was important, i.e., the occupant’s vehicle was the 
relevant vehicle with respect to countermeasure penetration. For crash avoidance and mitigation 
countermeasures, the likelihood of countermeasure installation on a vehicle other than the 
occupant’s vehicle can be more important, making another vehicle the relevant vehicle for a 
given occupant. For example, for occupants in the struck or leading vehicle in a rear-impact 
crash, the likelihood that forward collision technology would prevent the crash was dependent on 
the model year of the opposing “partner” vehicle rather than on the occupant’s own vehicle, 
since it was the striking vehicle that could potentially prevent the crash. Therefore, for any 
countermeasure where the effect on an occupant relies on the likelihood that the countermeasure 
was present on another vehicle in the crash, that partner vehicle’s characteristics were used to 
determine expected penetration relative to the case occupant.  
 
For occupant cases where the relevant vehicle was a partner vehicle rather than the occupant’s 
vehicle, procedures for applying penetration estimates were modified since early model-year 
vehicles were over-represented among partner vehicles in the projection dataset.13 The primary 
                                                 
13 In the retrospective dataset (2004-2015), approximately 61 percent of occupants in multi-vehicle crashes were in 
MY<2005 vehicles. In the projected target datasets, the occupants in these MY<2005 vehicles were downweighted 
to represent the much smaller proportion of occupants expected to be in these older vehicles in 2020-2030. 
Correspondingly, occupants in newer-model year vehicles were upweighted. After reweighting, however, the model 
year in the partner vehicle in each occupant case remained as it was coded in the original case. Thus the distribution 
of model years hard-coded for partner vehicles in the projection dataset does not reflect the much newer distribution 
of vehicle model years expected to be on the road in 2020 to 2030. 
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difference in estimating future penetration among cases where it was the partner vehicle that was 
the relevant vehicle (rather than the occupant’s own vehicle) was that countermeasures are 
applied to all cases in the dataset, not only those where the model year was 2005 or later. Thus, 
procedures for estimating future penetration (β parameters) for cases where the relevant vehicle 
in the original crash was a partner vehicle with model year earlier than 2005 were modified as 
described below. Procedures for estimating penetration for the original case (α parameters) and 
future penetration (β parameters) for cases where the partner vehicle in the original case was 
MY2005+ are the same as for cases where the occupant’s vehicle was the relevant vehicle. 
 
For occupant cases where the relevant vehicle was a partner vehicle with model year earlier than 
2005 or with model year unknown, βTY(PartnerMY<2005) was calculated with the goal of ensuring 
that the proportion of partner vehicles in the weighted projection dataset that were estimated to 
have the given countermeasure in the target year matched the expected overall penetration of the 
countermeasure in the fleet for that target year. Therefore, βTY(PartnerMY<2005) for the MY<2005 
partner vehicles was calculated in Equation (19) as a function of: 
 

• the expected future penetration of the countermeasure among MY2005+ vehicles 
(Overall βTY from Equation (14)) in the target projection year, 

• the expected penetration of the countermeasure among MY<2005 vehicles (βTY(MY<2005)) 
in the target projection year, calculated from penetration estimates by model year for each 
countermeasure, along with the distribution of vehicles by age estimated in Appendix A,  

• the proportion of occupants in the projected target year (OMY2005+(TY)) expected to be in 
MY2005+ vehicles, calculated based on the distribution of vehicles by age estimated in 
Appendix A and  

• the proportion of occupants in the dataset with relevant partner vehicle that was 
MY2005+, approximated by the proportion of occupants in multi-vehicle crashes in the 
retrospective dataset who are in MY2005+ vehicles (OMY2005+(Partner)). This proportion, 
drawn for this calculation directly from analysis of the model’s retrospective dataset, was 
38.7 percent. 
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𝛽𝛽𝑅𝑅𝑇𝑇(𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑀𝑀𝑇𝑇<2005)

=  
�1 − 𝑂𝑂𝑀𝑀𝑇𝑇2005+(𝑅𝑅𝑇𝑇)� × 𝛽𝛽𝑅𝑅𝑇𝑇(𝑀𝑀𝑇𝑇<2005) + (𝑂𝑂𝑀𝑀𝑇𝑇2005+(𝑅𝑅𝑇𝑇) −  𝑂𝑂𝑀𝑀𝑇𝑇2005+(𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟)) × 𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝛽𝛽𝑅𝑅𝑇𝑇

1 − 𝑂𝑂𝑀𝑀𝑇𝑇2005+(𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟)
 

(19) 

 

where: 
βTY(PartnerMY<2005) is proportion of the future fleet that would have the countermeasure in the given 

target year when the relevant vehicle is a partner vehicle with MY prior to 2005, 
βTY(MY<2005) is proportion of the future fleet that would have the countermeasure in the given 

target year among all vehicles with MY prior to 2005, 
OMY2005+(TY) is proportion of occupants in the projected target year expected to be in MY2005+ 

vehicles, and 
OMY2005+(Partner) is proportion of occupants with relevant partner vehicle that was MY2005+ 

among cases where relevant vehicle is a partner vehicle. 

2.6.3 Case-by-Case Application of Safety Countermeasures 
While the application of vehicle and population trends described in Section 2.5 involved 
reweighting cases in the stepping-stone dataset to reflect how trends would affect the number and 
proportion of occupants exposed to certain crash conditions, the application of safety 
countermeasures involved manipulating the case weight and/or case characteristics to reflect how 
a countermeasure could be expected to change the outcome of a given crash exposure. 
 
Crash avoidance countermeasures: For crash avoidance countermeasures where effectiveness 
was estimated as a percentage of a target population of crashes that would be prevented by a 
given crash avoidance countermeasure, the adjusted case-specific effectiveness for each crash 
avoidance countermeasure (ECA) was applied directly to case weight as shown in Equation (20) 
to reflect the percentage of such cases that would be prevented. Although the application of a 
crash avoidance countermeasure did not change the number of raw cases in the dataset, the total 
weighted number of occupants in crashes in the projected dataset was reduced. 
 
 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑃𝑃𝑎𝑎𝑎𝑎𝑔𝑔𝑃𝑃𝑟𝑟𝑟𝑟𝑎𝑎 =  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(1 − 𝐸𝐸𝑃𝑃𝑅𝑅) (20) 

where: 
ECA is the penetration-adjusted case-specific effectiveness for a given crash avoidance countermeasure, 

Weightadjusted is the weight of a case in the model after application of the countermeasure, and 
Weight is the weight of a case in the model prior to application of the countermeasure. 

 
For some countermeasures (e.g., SSF updates to NCAP that changed the criteria for evaluating 
static stability factor), effectiveness was negative for some cases in the target population. Where 
positive effectiveness for SSF represented a reduction in the frequency of rollovers with an 
increase in SSF, some categories of vehicles in the target population were documented with 
decreased SSF resulting in negative effectiveness. The negative effectiveness reflected that a 
decrease in SSF could lead to a rollover in cases that had previously only involved a side impact. 
This countermeasure was implemented by adding typical rollover injuries to cases in the target 
population associated with negative effectiveness. The details of this addition of injuries to the 
resulting pseudo-cases is discussed in the summary in the appendix corresponding to the NCAP 
2004 SSF update. 
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Crashworthiness countermeasures: For crashworthiness countermeasures, where effectiveness 
was estimated as a percentage of a target population that would experience a defined 
improvement in outcome as a result of a given crashworthiness countermeasure, each case in the 
target population was replaced by two pseudo-cases. One pseudo-case retained all the original 
case characteristics but was downweighted as shown in Equation (21). The other pseudo-case 
was altered to reflect the predicted outcome improvement with a weight calculated as shown in 
Equation (22). The outcome alteration can involve deletion of a specific injury or set of injuries 
in a case, or adjustment of the severity of case injuries, depending on the predicted effects of the 
countermeasure. If effectiveness estimates for a given countermeasure predicted the probability 
that injury severity will be “trickled down” to multiple lower-severity levels, then a pseudo-case 
was made for each of the possible reduced-severity outcomes with the pseudo-case weights 
distributed proportionally according to trickle-down probabilities. Since the sum of the weights 
of the resulting pseudo-cases always equaled the weight of the original case, the total number of 
occupants was not changed by the application of a crashworthiness countermeasure, but the 
overall frequency of poor outcome was reduced.  

 
 𝑃𝑃𝑃𝑃𝑊𝑊𝑃𝑃𝐿𝐿𝑃𝑃−𝑐𝑐𝑃𝑃𝑃𝑃𝑊𝑊 1: 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑃𝑃𝑎𝑎𝑎𝑎𝑔𝑔𝑃𝑃𝑟𝑟𝑟𝑟𝑎𝑎 =  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(1 − 𝐸𝐸𝑃𝑃𝑅𝑅) (21) 

 

 𝑃𝑃𝑃𝑃𝑊𝑊𝑃𝑃𝐿𝐿𝑃𝑃−𝑐𝑐𝑃𝑃𝑃𝑃𝑊𝑊 2: 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑃𝑃𝑎𝑎𝑎𝑎𝑔𝑔𝑃𝑃𝑟𝑟𝑟𝑟𝑎𝑎 =  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝐸𝐸𝑃𝑃𝑅𝑅) (22) 
 

where: 
ECW is the penetration-adjusted case-specific effectiveness for a given crashworthiness 

countermeasure, 
Weightadjusted is the weight of a case in the model after application of the countermeasure, and 

Weight is the weight of a case in the model prior to application of the countermeasure. 
 
Crash mitigation countermeasures: For crash mitigation countermeasures, effectiveness was 
defined as the percentage of a target population that would be exposed to a reduced severity 
crash by the given countermeasure. As with crashworthiness countermeasures, application of 
crash mitigation countermeasures results in division of a weighted case into proportionally 
weighted pseudo-cases, representing the proportion of occupants whose outcome would be 
unchanged and the proportion of occupants whose outcome would be altered by the reduced 
severity. The changes in the outcome of the reduced severity pseudo-case were estimated by 
calculating the average change of injury risk with the expected severity reduction associated with 
the countermeasure. Thus, as in crashworthiness countermeasures, crash mitigation 
countermeasures affected the injuries in an occupant case without changing the expected 
frequency of a case. Examples of crash mitigation countermeasures in the model included crash 
imminent braking and tire pressure monitoring systems. Details of the adjustment of outcome 
based on the predicted reduction in severity with specific countermeasures were included in the 
appendices to this report. 
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Interactions among the effects of countermeasures: The case-by-case procedures used in this 
model prevented double-counting the effect of multiple countermeasures since a countermeasure 
only affected the cases and injuries that remained after other countermeasures had been applied. 
Countermeasures that potentially affected the same injury in a given case were applied sequent-
ially. Therefore, if two countermeasures affecting head injury were applied to an occupant, 
application of the first countermeasure resulted in one pseudo-case with the head injury deleted 
and one pseudo-case that still had the head injury. When the second head-countermeasure was 
applied to the pseudo-case with no head injury, it would have no effect since any head injuries 
were already deleted. The second countermeasure would only affect the pseudo-case that still 
had a head injury, i.e., the head injury cases still expected to remain after application of the first 
countermeasure. Similarly, if a pair of overlapping countermeasures such as roadside rumble 
strips and lane departure warning were applied to the same road departure case, the second 
countermeasure would only be applied to the portion of the case weight that remained after the 
first countermeasure was applied. In these situations, each case weight adjustment was applied as 
a multiplier so the result was the same regardless of the order in which countermeasures were 
applied for most countermeasures. 
 
However, categories of countermeasures have been identified for which interactions between the 
countermeasures could result in a situation where the order of countermeasure application 
mattered: 
 

• Countermeasures expected to change the crash delta V,  
• Countermeasures expected to modify other case characteristics used to determine 

the target population or effectiveness of other countermeasures, and 
• Countermeasures expected to be redundant with ADS. 

 
Countermeasures expected to change the crash delta V: Crash mitigation countermeasures that 
change injury severity by reducing crash delta V (such as CIB, or braking vehicles with TPMS) 
may modify the effect of other countermeasures. Since other countermeasures rely on delta V, 
the change in delta V expected with these mitigation countermeasures could change whether the 
case was still in the target population or the effectiveness of these other countermeasures. As a 
result: 
 

• Countermeasures with the potential to change crash delta V (such as CIB and TPMS) 
were applied prior to the application of any countermeasures with potentially overlapping 
target populations that use delta V to identify the target population or estimate 
effectiveness. Countermeasures that relied on delta V included updates associated with 
FMVSS No. 208, 214, and 301. 

• The reduction in delta V resulting from application of countermeasures that changed delta 
V was saved in the pseudo-cases that resulted from application of those countermeasures. 
For example, the reduction in delta V expected after application of TPMS to a given case 
was saved in the case as a variable called RTPMS. 

 
Thus, for each countermeasure that used case delta V to identify target population or 
effectiveness, any delta V reduction resulting from previously applied countermeasures was 
accounted for. 



53 

 
Countermeasures expected to modify other case characteristics used to determine the target 
population or effectiveness of other cases: The application of some countermeasures produced 
pseudo-cases that were in the target population of other countermeasures that would not have 
affected their corresponding original parent cases. For example, application of the SSF updates 
in the 2004 NCAP enhancement resulted in the addition of rollover injuries to pseudo-cases 
whose parent cases had not involved a rollover. These resulting pseudo-cases could therefore be 
included in the target populations for countermeasures such as ejection mitigation (FMVSS No. 
226) and roof crush reduction (FMVSS No. 216), while the parent cases without rollover would 
not have been in these target populations. Interactions such as these were addressed individually 
for countermeasures, such as SSF, that alter characteristics used to determine the target 
population of other countermeasures. These interactions were addressed by ensuring, for 
example, that countermeasures like SSF were applied prior to other countermeasures whose 
target populations may be affected. 
 
Countermeasures expected to be redundant with automated driving systems: Crash avoidance 
and crash mitigation countermeasures that duplicated functions accounted for in the modeled 
ADS countermeasure (such as forward collision warning or crash imminent braking) were not 
applied to the portion of each case expected to be affected by high-level driving automation in 
the target future dataset. Additionally, countermeasures that affect driver attention (such as 
distraction and alcohol-targeted countermeasures) were not applied to the proportion of cases 
affected by high-level driving automation in the model. It was expected that a vehicle with ADS 
would outperform these individual safety countermeasures that duplicated functions accounted 
for in the modeled ADS countermeasure. As a check, all the countermeasures that were dropped 
for the proportion of cases expected to be ADS-equipped in the future were applied in parallel to 
the ADS countermeasures. If the benefits of the individual countermeasures were greater than the 
benefits from ADS for a given case, the individual countermeasures were applied instead of the 
ADS countermeasures. 

2.7 Analysis of Model Output 
Weighted crash and injury results for the projected datasets for 2020, 2025, and 2030 can be 
analyzed in the same way that weighted retrospective data can be analyzed. Since the projected 
datasets are still full datasets with all the same variables that were available in the original 
retrospective cases, the future results can be disaggregated by most of the same 
crash/vehicle/occupant parameters that can be used to analyze retrospective data (Mallory et al., 
2017). Similarly, the detailed injury results in the projected datasets can be used to quantify crash 
harm in the future target years, just as it can be quantified for the period covered by the 
retrospective cases. Analysis of the weighted pseudo-cases was performed using the same 
procedures for survey-sampled data that were applied to the weighted retrospective dataset. 
 
In the ultimate output of the projection model summarized in the results report (Mallory et al., in 
press), results from the projection model for 2020, 2025, and 2030 will be shown along with 
retrospective results for comparison. In the results of the evaluation model included in this 
methodology report, results compare only projected data and comparison data from 2013 to 
2015. Results for the full projection model will include the frequency of different types of crash 
scenarios and the injury outcome for different crash, vehicle, and occupant groups. The results 
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for the evaluation model in this report include only a limited sample of the ways the model 
output can be analyzed. 
 
The following sections provide detail on the several measures of outcome harm (Section 2.7.1) 
and crash and occupant characteristics (Section 2.7.2) that can be used to analyze projected 
future cases. These measures of harm were estimated using SURVEYFREQ procedures in SAS 
for all harm measures except those associated with cost, which were estimated using 
SURVEYMEANS procedures. 
 
For many of the harm measures in the retrospective dataset, ninety-five percent confidence 
intervals can be estimated as 1.96 times the standard error calculated using SAS survey analysis 
procedures. The standard errors calculated by survey analysis procedures estimate the error that 
results from sampling individual cases from the population. The standard error calculations in 
this model are a function of case weights. The weights in the retrospective dataset are based on 
the CDS survey design, and thus account for the original sampling error in CDS. However, the 
weights have been scaled in the retrospective model using counts of fatalities from FARS and 
sample-based estimates of non-fatal case counts from GES. Thus, the standard error estimates 
are thus also adjusted by the survey analysis procedures to account for the upweighting and 
downweighting of the point estimates using FARS and GES data. Sampling error in GES was not 
explicitly captured in the confidence interval estimation. Confidence intervals were not estimated 
for the projection datasets or for attributable fatality, cost, or equivalent lives lost estimates 
because of the complexity of the adjustments made to individual cases for these calculations.  

2.7.1 Measures of Harm 
Multiple measures of injury harm were compared in the analysis, to estimate both mean level of 
harm and total amount of harm in the retrospective and projected future datasets. Included 
measures of harm in the current model were as follows: 
 

• Fatality and attributable fatality 
• Injury by AIS severity 
• Cost and attributable cost 
• Equivalent lives lost 

 
Early versions of the model have also been used to quantify harm in terms of disability and 
attributable disability, using FCI, which is a functional capacity index corresponding to AIS 
(Segui-Gomez, 1996). Preliminary results, however, have shown that FCI was ineffective in 
capturing the effects of injuries such as whiplash associated disorder or mild traumatic brain 
injury. Future versions of the model will therefore incorporate alternative measures of disability, 
such as the revised FCI or the RPMI, which estimates the risk of permanent medical impairment 
associated with specific injuries (Malm et al., 2008; Gustafsson et al., 2015). No disability results 
are currently output by the model. 
 
The details of the harm measures available for analysis of the model results are described in the 
following sections. 
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2.7.1.1 Fatality & Attributable Fatality 
Fatality in retrospective cases: For analysis of retrospective data, which describes the injuries 
documented in the original NASS CDS case, fatality was identified using the CDS 
treatment/mortality variable which identifies cases with crash-related fatality within 30 days of 
the crash (NASS CDS variable name: TREATMNT=1). In cases where the treatment/mortality 
variable was missing, the KABCO variable was used to identify fatal cases. For analysis of 
projected data, in which the treatment/mortality variable will no longer be valid if there was a 
possibility that reduced injury severity may have prevented death, harm associated with fatality 
was estimated using the attributable fatality method. Below, the attributable fatality method is 
described, along with the application of these methods to the estimation of fatality in the 
projected datasets. 
 
Attributable fatality method: The attributable fatality method, under ongoing development by 
Martin and others (Martin & Eppinger, 2003; Hasija et al., 2006; Mallory et al., 2017), was used 
to estimate the importance of injuries in different body regions with respect to threat to life.  
 
In the attributable fatality method, the probability of fatality in each adult occupant case was 
estimated following the procedure described by Hasija et al. in 2006 (Equation [23]). In that 
procedure, each AIS-coded injury type was assigned a “mortality rank” (MR) value that 
corresponds to its relative contribution to fatality risk. The MR values for AIS 2+ injuries and the 
five function parameters in Equation (23) were drawn from the values re-optimized for the 
attributable fatality method in 2017 using updated datasets from the Crash Injury Research & 
Engineering Network (Mallory et al., 2017). The fatality probability function in Equation (23) 
can be applied to occupants age 15 and older in the projection model because this range 
corresponds to the dataset used to develop the mortality rank values used in the attributable 
fatality methodology. 

 
 Age 15+: pFatal = 

1

�1+𝑟𝑟−(𝑎𝑎0+𝑎𝑎1𝐼𝐼1+𝑎𝑎2𝐼𝐼2+𝑎𝑎3𝐼𝐼3)�1/𝑑𝑑 (23) 

where: 
pFatal is an occupant’s probability of fatality, 

I1, I2, and I3 are the mortality rank (MR) values corresponding to the three highest-MR injuries 
respectively, and 

a0, a1, a2, a3 and d are function parameters. 
 
In this way, the probability of fatality was calculated based on each adult occupant’s most 
serious three injuries. Given that MAIS 1 and 2 cases are very rarely expected to be fatal and 
MAIS 6 cases are expected to be fatal more frequently than was reflected in the data used to 
optimize mortality ranking values,14 the probability of fatality (pFatal) was set to 0.01 percent 
(the lowest possible value) for cases where the most serious injury was AIS 1 or 2 and to 99.99 
percent (the highest possible value) for cases with an AIS 6 injury. AIS 7 codes corresponding to 
injuries where the patient “died without further evaluation” were also assigned a pFatal of 99.99 
percent.  

                                                 
14 Since CIREN data comes from trauma center data collection teams, occupants who die at the scene of a crash 
prior to emergency transport are less likely to be included in the dataset, potentially resulting in a bias toward higher 
survivability of AIS 6 injuries than would be expected if the dead-at-the-scene cases were included. 
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Harm, including probability of fatality, was calculated for the future projection datasets as well 
as for retrospective datasets. However, there are injuries in the dataset with reduced severity 
compared to originally coded injuries. This severity adjustment can result in combinations of 
injury type and severity that do not exist, and that therefore have no associated MR estimate. For 
example, application of countermeasures can reduce the severity of an AIS 5 brainstem injury to 
an AIS 4 brainstem injury, which does not exist in the AIS coding system and therefore has no 
associated MR. In such cases, the modified-code injuries were re-grouped to the most similar 
injury region that did have an associated MR. For example, brainstem injuries reduced to AIS 4 
in the projection datasets were assigned MR values associated with other AIS 4 head injuries in 
the more general head injury/loss of consciousness/other MR category. 
 
In the projection model, the probability of fatality among occupants younger than age 15 was 
estimated based on mortality rates among children in the NTDB dataset of trauma center cases. 
Previously, Doud reported on the NTDB mortality rate among children with specific AIS-coded 
injuries, where that injury was the MAIS injury (Doud et al., 2015). That study provided MAIS-
based mortality rates for the most common AIS-coded injuries, covering 95 percent of the 
pediatric injuries coded in pediatric motor vehicle crash cases. Data on the mortality rate for 
individual injuries in Appendix 1 of the Doud study were applied in the projection model to 
estimate the probability of fatality (pFatal) for pediatric age groups by the body region and AIS 
injury severity of the MAIS injury (Table 15 to Table 17). For each child occupant in the 
projection model, pFatal was estimated as the mortality rate for the child’s MAIS injury from 
these tables. For example, a mortality rate of 7.41 percent would be applied to a 3-year old child 
whose highest-AIS injury was an AIS 4 head injury. In cases with multiple injuries of the 
severity level of the case MAIS, the highest corresponding mortality rate was used. Mortality 
rate for body region/severity combinations for which no information was available from the 
Doud data are left blank (--) in the tables below. If no mortality rate estimate was provided for 
any of a child’s MAIS injuries, pFatal was estimated to be equal to the mortality rate that 
corresponds to the severity level of the child’s MAIS injury across all body regions. For 
example, a child with MAIS 4 injuries to the neck and abdomen would be assigned a pFatal of 
7.59 percent. As with adult occupants, pFatal was set to 0.01 percent for cases where the most 
serious injury was AIS 1 or 2 and to 99.99 percent for cases with an AIS 6 injury or an AIS 7 
injury corresponding to the “died without further evaluation” codes.  
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Table 15. Mortality rates by MAIS injury region and severity for age 0-4 

AIS Injury Region MAIS 3 MAIS 4 MAIS 5 
1 Head 0.0182 0.0741 0.3187 

2 Face 0.0000 -- -- 

3 Neck -- -- -- 

4 Thorax 0.0285 0.1250 -- 

5 Abdomen 0.0000 -- 0.1600 

6 Spine 0.0000 -- -- 

7 Upper Extremity 0.0164 -- -- 

8 Lower Extremity 0.0136 -- -- 

9 Unspecified -- -- -- 

All Body Regions 0.0180 0.0759 0.2924 

 
Table 16. Mortality rates by MAIS injury region and severity for age 5-9 

AIS Injury Region MAIS 3 MAIS 4 MAIS 5 
1 Head 0.0207 0.0610 0.3450 

2 Face 0.0000 -- -- 

3 Neck -- -- -- 

4 Thorax 0.0118 0.0736 -- 

5 Abdomen -- 0.0000 0.0000 

6 Spine 0.1667 -- -- 

7 Upper Extremity 0.0162 -- -- 

8 Lower Extremity 0.0092 -- -- 

9 Unspecified -- -- -- 

All Body Regions 0.0140 0.0614 0.3420 
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Table 17. Mortality rates by MAIS injury region and severity for age 10-14 

AIS Injury Region MAIS 3 MAIS 4 MAIS 5 
1 Head 0.0149 0.0516 0.3005 

2 Face 0.0000 -- -- 

3 Neck -- -- -- 

4 Thorax 0.0076 0.0285 -- 

5 Abdomen 0.0027 0.0305 -- 

6 Spine 0.0000 -- -- 

7 Upper Extremity 0.0070 -- -- 

8 Lower Extremity 0.0058 -- -- 

9 Unspecified -- -- -- 

All Body Regions 0.0079 0.0457 0.3005 
 
Calculation of the fatalities attributable to a particular body region was a three-step process: 
 

1. The expected number of fatalities in an occupant group (e.g., all occupants in a certain 
crash type) was estimated by summing the probability of fatality (pFatal) for all 
occupants in the group.  

2. Next, all injuries to the body region of interest were deleted, the pFatal recalculated for 
each case, and a revised expected number of fatalities was estimated for the group by 
summing the re-calculated probability of fatality (pFatal) for all occupants. 

3. The difference between these two totals (the expected number of fatalities minus the 
revised expected number of fatalities absent injuries to the body region of interest) was 
the number of fatalities attributable to the given body region.  

 
It should be noted that the sum of attributable fatalities associated with each body region will be 
less than the total number of expected deaths in an occupant set as a result of occupants who 
sustain life-threatening injuries to multiple body regions. For example, for an occupant with a 
life-threatening head injury and a life-threatening thorax injury, elimination of all head injuries 
or elimination of all thorax injuries would each lead to a reduced probability of fatality, but only 
elimination of all head injuries and all thorax injuries would lead to zero probability of fatality 
for that occupant. Correspondingly, summed over the whole dataset, a fraction of fatalities could 
be prevented by elimination of head injuries, and a fraction of fatalities could be prevented by 
elimination of thorax injuries, but there will always be a fraction of fatalities that could only be 
prevented if both head and thorax injuries were eliminated. 
 
Note also that fatalities associated with injuries not coded with a particular body region (e.g., 
burns or skin injuries that are coded as body region 9) do not get captured in analyses of 
attributable fatality by body region. 
 
Fatality in projected future cases: The injuries coded in pseudo-cases in the future projected 
dataset were modified to reflect injury reduction expected with countermeasures. However, the 
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treatment/mortality variable associated with each original case was not modified to reflect the 
reduced fatality risk associated with each injury reduction and instead remained at its initial 
value. Therefore, that variable could not be used to analyze fatality frequency in the future 
projected dataset for comparison to the fatality frequency in the retrospective dataset. Instead, 
after application of all countermeasures, the cases in the projected future datasets that were 
descended from retrospective cases that were originally fatal were each divided into two pseudo-
cases: one fatal and one non-fatal. The proportion of each case’s weight that was assigned to its 
fatal and non-fatal pseudo-cases was determined based on the reduced injuries in each projected 
case in comparison to its corresponding original retrospective case. These proportions were 
estimated for each occupant using Equations (24) and (25). For adults, the pFatal was estimated 
by applying Equation (23) to the injuries in the pseudo-case in the projection dataset and in the 
original parent case in the retrospective dataset. For children, pFatal was estimated in the 
projected case and the original parent case using Table 15 to Table 17. For any pseudo-case 
where the corresponding original retrospective or “parent” case was non-fatal, it was assumed 
that the pseudo-case outcome was also non-fatal.  
 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑠𝑠𝑃𝑃𝑟𝑟𝑔𝑔𝑎𝑎𝑟𝑟(𝑓𝑓𝑃𝑃𝑟𝑟𝑃𝑃𝑓𝑓) = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟 ∗  
𝑃𝑃𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑟𝑟𝑔𝑔𝑎𝑎𝑟𝑟
𝑃𝑃𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟

 (24) 

 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 𝑠𝑠𝑃𝑃𝑟𝑟𝑔𝑔𝑎𝑎𝑟𝑟(𝑠𝑠𝑟𝑟𝑟𝑟 𝑓𝑓𝑃𝑃𝑟𝑟𝑃𝑃𝑓𝑓) = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟 ∗  �1 −  
𝑃𝑃𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑟𝑟𝑔𝑔𝑎𝑎𝑟𝑟
𝑃𝑃𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟

� (25) 

where: 
pFatal is the probability of fatality in the countermeasure-modified pseudo-case and the original NASS 

CDS parent case, calculated as a function of the coded injuries using Equation (23) for adults and 
Table 15 to Table 17 for children. 

 
For the relatively rare cases where the original parent case was fatal despite being coded with 
MAIS of 2 or less, the probability of fatality (pFatal) was set to 0.01 percent by the methods 
described earlier in this section, thus avoiding division by zero. Therefore, in originally fatal 
parent cases with MAIS<=2, the ratio of pFatalpseudo and pFatalparent was 1 even when injuries 
were reduced in the countermeasure-modified pseudo-case. In other words, these fatal cases with 
moderate and minor injuries were still assumed to be fatal even with a reduction in injuries, 
absent quantifiable information on the reduction of fatality risk.  
 
As in the analysis of retrospective cases, the attributable fatality method was used on cases in the 
projected future datasets to break down the importance of injuries by body regions with respect 
to threat to life.  

2.7.1.2 Injury by AIS Severity  
Injuries from NASS CDS cases from 2009 and earlier were coded with AIS codes corresponding 
to the 2000 NASS Injury Coding Manual, which in turn was based on the 1990 Revision (1998 
Update) of the AAAM AIS Coding Manual. Injuries from cases in 2010 and later that were 
originally coded with the NHTSA Injury Coding Manual that was based on AAAM’s 2005 
AIS/Update 2008 (AAAM, 2008) were converted for this model to equivalent AIS 1990/98 
codes as described in Section 2.2.1. Thus, all injuries in the model, including those in 
retrospective and projection datasets, were represented by AIS 1990/98 injury codes. 
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In analyses of injury among vehicle occupants by severity, occupants with MAIS injury at the 
2+, 3+, 4+ or 5+ level included any surviving occupants with one or more injuries with at least 
the given severity level to any body region, as well as all fatally injured occupants (regardless of 
MAIS). Fatal cases were identified using the methods developed in Section 2.7.1.1, rather than 
relying on the fatality status of the original parent case.  
 
In analyses of severity by MAIS, each occupant was counted only once. Analyses of injuries by 
body region and AIS severity counted the number of occupants with at least one injury in the 
given body region so that occupants with multiple injuries in a body region were only counted 
once, but occupants could be counted in multiple body regions.  

2.7.1.3 Cost and Attributable Cost 
The cost associated with injury crashes was estimated using the methods and values reported by 
Blincoe et al., (2015). Each AIS-coded injury was categorized into the body categories defined 
by Blincoe et al., based on the REGION90, STRUTYPE, STRUSPEC, and AIS severity digits of 
the seven-digit AIS code. For cases from 2010 and later, hard-coded in AIS 2005/08, the mapped 
AIS 1990/98 code was used if available. If no equivalent AIS 1990/98 code was recommended in 
the AIS 2005/08 manual, the regions, structure type, specific structure and AIS severity digits of 
the untranslated AIS 2005/Update 2008 code were used. Where injury categories were 
ambiguous, categorization of AIS-coded injuries into the cost-study injury bins was done in 
consultation with one of the authors of the original study.15 Injuries coded as burns with AIS 
severity 3 or 4 were assigned the cost associated with AIS 2 burns, as there were no costs 
available for these higher severities.  
 
For non-fatal cases, each coded injury was keyed to a cost that included medical and emergency 
services, lost household and wage work, and legal and insurance costs in 2010 dollars. This total 
did not include property damage or values associated with lost quality of life and did not vary by 
occupant age. A per-occupant cost was then set to each occupant’s highest-cost injury. A cost of 
$1,381,984 was applied to fatal cases. Uninjured occupants were assigned a cost of $0 in the 
projection model. For cases in the projected dataset, which has no definitive fatality variable, the 
methods for estimating fatality in projection cases in Section 2.7.1.1 were used to separate each 
projection case into a fatal pseudo-case (to which the fatal cost estimate was applied) and a 
nonfatal pseudo-case (for which costs were estimated based on the highest-cost injury). 
 
The estimated cost associated with an individual occupant case did not reflect actual or 
documented medical costs for that occupant, but rather an estimate of costs expected given the 
individual’s injuries. The occupant cost was set to the costliest of the AIS-coded injuries in the 
case. 
 
Following a procedure similar to Martin’s “attributable fatality” method (Martin & Eppinger, 
2003; Hasija et al., 2006), the proportion of cost that can be attributed to specific body regions 
was estimated for each occupant. This procedure is summarized below. This attributable cost 
represents the total cost expected to be saved if injuries to a particular body region were 
completely eliminated.  
 
                                                 
15 Ted R. Miller, Pacific Institute for Research and Evaluation, personal communication, 2015. 
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Calculating the cost attributable to a particular body region was a three-step process: 
 

1. The expected total cost of injury in a particular analysis subgroup was estimated by 
summing the expected injury costs of all occupants in the group. 

2. Next, all injuries to the body region of interest were deleted, the cost recalculated for 
each case, and the revised expected total cost was estimated for the group by summing 
the re-calculated cost for all occupants. 

3. The difference between these two totals (the expected total cost to all occupants – the 
revised expected total cost absent injuries to the body region of interest) was the total 
injury cost attributable to the given body region.  

 
The magnitude of total estimated cost attributable to individual body regions represents the total 
cost-savings predicted by eliminating all injuries to the given body region. As with attributable 
fatality, the sum of attributable costs across body regions would be expected to be less than the 
total costs predicted to all occupants in the analysis group as a result of individual occupants with 
injuries to multiple body regions. When comparing costs attributable to different body regions 
over time, it should be noted that a decrease in injury frequency in one body region can lead to 
an apparent increase in costs in another body region. This potentially misleading increase occurs 
because each occupant’s cost was linked to the costliest injury. For instance, reduction of head 
injury in a large number of cases could result in the thorax or extremity injuries becoming the 
costliest injury in those cases. This shift would increase the cost attributable to thorax or 
extremity injury without any increase in the frequency of these injuries. Therefore, increases in 
attributable cost cannot be interpreted as absolute increases in the frequency or severity of injury 
to particular body regions. Note that costs associated with injuries not coded with a particular 
body region (e.g., burns or skin injury coded in body region 9) do not get captured in analyses of 
attributable fatality by body region. 
 
Since harm was calculated for the future projection datasets, as well as for retrospective datasets, 
there were injuries in the dataset with reduced severity compared to originally coded injuries. 
This severity adjustment can result in combinations of injury type and severity that do not exist, 
and that therefore have no associated cost estimate. For example, application of countermeasures 
can reduce the severity of an AIS 4 cervical spinal cord injury to an AIS 3 cervical spinal cord 
injury, which does not exist in the AIS coding system and therefore has no associated cost 
estimate. In such cases, the modified-code injuries were re-grouped to the most similar injury 
region that did have an associated cost in Blincoe et al. (2015). For example, cervical spinal cord 
injuries reduced to AIS 3 in the projection datasets were assigned costs associated with other 
cervical spine injuries in the face/other head/neck cost category. 

2.7.1.4 Equivalent Lives Lost 
“Equivalent lives lost” is a harm measure developed for this projection model effort, analogous 
to the “equivalent lives saved” estimation often used in National Center for Statistics and 
Analysis benefits analyses. In both harm measures, outcomes from non-fatal and fatal cases are 
combined to provide a single, cost-based estimate of harm, expressed in terms of the estimated 
cost of associated with one fatality. For example, a non-fatal case with an estimated cost of 10% 
of the estimated cost of a fatal case, would be weighted as 0.1 equivalent lives lost. This cost-
based weight can be summed across groups of crash occupants to estimate the total equivalent 
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number of lives lost expected for the group. Comprehensive costs estimated for fatalities and for 
MAIS injuries by body region were obtained for the calculation of equivalent lives lost from 
NHTSA’s most recent cost analysis (Blincoe et al., 2015). These cost estimates were used to 
estimate equivalent lives lost in both the retrospective and projected future datasets, in 2010 
dollars without adjustment for inflation or updated value of a statistical life. The discount rate 
that is typically used in benefits analyses did not apply in the model because the output 
represents problems remaining at a specific point in time (versus benefits over the lifetime of a 
vehicle). Therefore, only undiscounted values are presented. While equivalent lives saved is 
calculated based on the difference between the cost-based estimate of the number of equivalent 
fatalities before and after a safety improvement, the equivalent lives lost metric in this model was 
simply a count of the equivalent lives lost estimated in a given dataset. 
 
To calculate equivalent lives lost in the projection model, AIS codes and fatality status were 
needed for all cases in the dataset. For estimation of this harm measure in the projected datasets, 
fatality was determined as explained in Section 2.7.1.1 rather than by using the fatality status of 
the original case.  

2.7.2 Analysis Subgroups 
The primary groups available to disaggregate results were pre-crash scenario and impact 
direction. For additional disaggregation of the data, the variables available for each case in the 
model datasets were the same NASS CDS variables that were coded with the original source 
cases. Variables available to further analyze by pre-crash scenario included intersection type, 
roadway type, lighting, surface condition, and road curvature. Variables available for analysis by 
impact direction included occupant age, restraint use, seat position, and injured body region. 
These variables are described below in more detail. Results can also be analyzed by vehicle type, 
which was categorized as explained in Section 2.5.1. 
 
Pre-crash scenario: Cases were classified according to the pre-crash scenario typology 
developed by Swanson et al., (2016). This draft revised typology defines 36 pre-crash scenarios 
that are determined by vehicle movements and critical events occurring immediately prior to a 
crash. To display the results effectively, the number of analysis subgroups was limited as defined 
in Table 18. The scenario numbers in that table correspond to the numbering system used by 
Swanson et al. All other crashes that did not fall into the defined scenario sub-groups were 
included in an “Other” category in the model results. This “Other” category included relatively 
low frequency scenarios where the NASS CDS case occupant was in a vehicle that impacted an 
animal, pedestrian, or cyclist. 
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Table 18. Pre-crash scenario group definitions 

Group Scenario & Scenario # SAS Coding Definition (NASS CDS Variables) 

Control 
Loss 

Control loss/vehicle action 2 
For same vehicle: PREEVENT in (5:9) & PREMOVE in (1:4, 6, 
8:97)  
For same vehicle: ACCTYPE in (2, 7) & PREMOVE in (1:4, 6, 
8:97) 
For same vehicle: ACCTYPE in (34, 36, 54, 56) & PREMOVE in 
(1:4, 6, 8:97) 

Control loss/no vehicle action 3 

Road 
Departure 

Road edge depart/maneuver 4 
PREEVENT in (10:14) & PREMOVE^=13 
ACCTYPE in (1, 6, 14, 92) & PREMOVE^=13 Road edge depart/no 

maneuver 5 

Lane 
Change 

Turning/same direction 14 VEHFORMS=1 & PREEVENT=60, 61 
PREEVENT=64 
ACCTYPE in (44:49, 70:73) & PREMOVE in (1:12, 14:16) 
ACCTYPE in (20:43) & Struck vehicle: PREMOVE in (6, 8:12, 
15:16) 
Any combination of vehicles: PREMOVE in (8:12) & PREEVENT 
in (60:61) 
Any combination of vehicles: PREMOVE in (6, 15:16) & 
PREEVENT in (60:61) 

Parking/same direction 15 

Changing lanes/same 
direction 16 

Drifting/same direction 17 

Opposite 
Direction 

Opposite direct/maneuver 18 VEHFORMS=1 & PREEVENT=54, 62:63 
VEHFORMS>1 & ACCTYPE in 50:67 Opposite direct/no maneuver 19 

Rear-End 

Striking maneuver 20 PREEVENT in (50:52) 
ACCTYPE in (20:43) & striking vehicle: PREMOVE in (6, 8:13, 
15:97)  
ACCTYPE in (20:43) & struck vehicle: PREMOVE in (1:5, 7, 14)  
Same vehicle: PREMOVE in (1:5, 7, 14) & PREEVENT=53 
ACCTYPE in (21:23, 25:27, 29:31) 
ACCTYPE in (20:43) & one vehicle: PREMOVE=1 & other 
vehicle: PREMOVE=0 

Lead Vehicle Accelerating 21 

Lead Vehicle Moving 22 

Lead Vehicle Decelerating  23 

Lead Vehicle Stopped 24 

Lateral 
Crossing 
Paths 

Right turn into path 25 VEHFORMS=1 & TRAFCONT^=1 & PREEVENT in (65:68, 
70:73) 
TRAFCONT=1 & ACCTYPE in (78:81) 
Any combination: TRAFCONT=1 & PREMOVE=10 & 
PREEVENT in (65:68) 
TRAFCONT=1 & PREMOVE=10 & ACCTYPE in (74:75, 84:85)  
TRAFCONT=1 & one vehicle: PREEVENT=16 & other vehicle: 
PREEVENT in (65:68)  
TRAFCONT^=1 & ACCTYPE in (74:86)  
TRAFCONT^=1 & PREEVENT in (65:68, 70:78) 
ACCTYPE in (76:83, 86:89) 

Right turn across path 26 

Straight crossing paths 27 

Left turn across path, lateral 
direction 28 

Left turn into path 
 29 

LTAP/OD LTAP/OD - Left turn across 
path, opposite direction 30 

ACCTYPE in (68:69) 
Any combination of vehicles: PREMOVE=11 & PREEVENT in 
(54, 62:63) 
One vehicle: PREEVENT=15 & other vehicle: Vy_PREEVENT in 
(54, 62:63) 
TRAFCONT=1 & ACCTYPE in (74:75) & one vehicle: 
PREMOVE=11 & other vehicle: PREMOVE^=10  

 
Intersection type: The relation of each case to an intersection was identified using the variables 
Relationship to Interchange or Junction (NASS CDS variable name RELINTER) and Traffic 
Control Device (NASS CDS variable name TRAFCONT) as seen in Table 19. For this 
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projection model, a sign-controlled intersection included stop, yield, warning, school, and other 
signs. Included in the “Other” category were crashes that occurred at a driveway, an alley, an 
uncontrolled intersection, or were coded as unknown. 

Table 19. Intersection type definitions  

Intersection Type SAS Coding Definition (NASS CDS Variables) 
Non-Intersection RELINTER=0 
Interchange RELINTER=1 
Sign Controlled RELINTER=2 & TRAFCONT in (2:7) 
Signal Controlled RELINTER=2 & TRAFCONT=1 
Other RELINTER ^in (0:2) or TRAFCONT ^in (1:7) 

 
Roadway type: Since urban and rural freeways and highways are not specifically identified in 
NASS CDS, roadway type was classified using the variables Trafficway Flow (NASS CDS 
variable name TRAFFLOW) and Posted Speed Limit (NASS CDS variable name SPLIMIT), 
which was coded in km/h. The Trafficway Flow variable, used to differentiate types of high-
speed roadways, indicated if a median or centerline barrier was present. Included in the “Other” 
category were crashes where the speed limit was unknown, the speed limit did not exist, or it was 
unknown if a highway was divided.  

Table 20. Roadway type definitions 

Roadway Type SAS Coding Definition (NASS CDS Variables) 
≥ 45 mph, Divided 72≤SPLIMIT<999 & TRAFFLOW in (1:2) 
≥ 45 mph, Not Divided 72≤SPLIMIT<999 & TRAFFLOW in (0, 3:5) 
> 25 mph & < 45mph 41<SPLIMIT<72 
≤ 25 mph SPLIMIT≤41 
Other SPLIMIT ^in (1:998) or (SPLIMI≥72 & TRAFFLOW ^in (0:5) 

 
Lighting: Output can be disaggregated using the Lighting Condition variable (NASS CDS 
variable name LGTCOND) as seen in Table 21. For this projection model, the category of “Day” 
included dusk and dawn. Included in the “Other” category were crashes that occurred when the 
light conditions were unknown.  

 Table 21. Lighting variable definitions 

Lighting SAS Coding Definition (NASS CDS Variables) 
Day LGTCOND in (1, 4:5)  
Night LGTCOND=2 
Night With Lights LGTCOND=3 
Other LGTCOND ^in (1:5)  

 
Surface condition: The roadway surface was defined using the Surface Condition variable 
(NASS CDS variable name SURCOND) as seen in Table 22. “Dry” roads included surfaces that 
were dry and those covered with sand, mud, dirt, and gravel. The “Slippery” category included 
wet, snow, slush, ice, frost, water, and oil. Included in the “Other” category were crashes that 
occurred when road surface conditions were unknown.   
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Table 22. Surface condition definition 

Surface Condition SAS Coding Definition (NASS CDS Variables) 
Dry SURCOND in (1, 7:8) 
Slippery SURCOND in (2:6, 9) 
Other SURCOND ^in (1:9) 

 
Road curvature: Road curvature was defined using the Alignment variable (NASS CDS 
variable name ALIGNMNT) as seen in Table 23. The “Other” category included crashes where 
the road curvature was coded as unknown. 

Table 23. Road curvature definitions 

Road Curvature SAS Coding Definition (NASS CDS Variables) 
Straight ALIGNMNT=1 
Curved (right & left) ALIGNMNT in (2, 3) 
Other ALIGNMNT ^in (1:3) 

 
Impact direction: Rollovers were identified as those with primary damage from overturn (SAS 
coding definition TDD1=“O”) as shown in Table 24. Other occupant cases analyzed in NASS 
CDS were sorted by impact direction using the CDC variables that describe damage distribution 
according to the Collison Damage Classification system (SAE 1980). This classification was 
based on the area of first contact as well as on principal direction of force and area of greatest 
deformation or contact (Table 25). The categories used included frontal oblique crashes 
following previously defined methods (NHTSA, 2015b) as well as frontal, side, and rear crashes, 
defined on similar principles. Cases with missing CDC variables were classified using the 
accident type variable (NASS CDS variable name ACCTYPE) when possible, as shown in Table 
26. Vehicles that were identified as the rear-impacted vehicle in the “rear end” and “forward 
impact” configurations were assumed to be rear impacts. 

Table 24. Impact direction definition (overturn) 

SAS Coding Definition Impact 
Direction TDD1 CDC Variables 

GAD1 SHL1 DOF1 
O Any Any Any Rollover 
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Table 25. Impact direction definitions (anything other than overturn) 

 

SAS Coding Definition Impact 
Direction GAD1 SHL1 DOF1 

L 

F, Y 

11-12 o'clock Frontal Oblique 

7-10 o'clock Side 

1-5 o'clock Other 

B, Z 

8-11 o'clock Side 

7 o’clock Rear 

12-5 o'clock Other 

P, D 
7-11 o’clock Side 

12-5 o’clock Other 

Any 
6 o'clock Rear 

Unknown Side 

Unknown 
7-10 o'clock Side 

11-12 o'clock Frontal Oblique 

R 

F, Y 

12-1 o'clock Frontal Oblique 

2-5 o'clock Side 

7-11 o'clock Other 

B, Z 

1-4 o'clock Side 

5 o’clock Rear 

7-12 o'clock Other 

P, D 
1-5 o’clock Side 

7-12 o’clock Other 

Any 
6 o'clock Rear 

Unknown Side 

Unknown 
2-5 o'clock Side 

12-1 o'clock Frontal Oblique 

B Any 

4-8 o'clock Rear 

3 o’clock 
9 o’clock Side 

10-2 o'clock Other 

Unknown Rear 

T, U Any Any Other 

SAS Coding Definition Impact 
Direction GAD1 SHL1 DOF1 

F 

L 

11 -12 o'clock Frontal Oblique 

1-3 o'clock Other 

9-10 o'clock Side 

Unknown Frontal Oblique 

R 

9-11 o'clock Other 

12-1 o'clock Frontal Oblique 

2-3 o'clock Side 

Unknown Frontal Oblique 

Y 

12 o'clock Frontal  

11 o'clock Frontal Oblique 

1-3 o'clock Other 

9-10 o'clock Side 

Unknown Frontal Oblique 

Z 

12 o'clock Frontal  

1 o'clock Frontal Oblique 

2-3 o'clock Side 

9-11 o'clock Other 

Unknown Frontal Oblique 

D 

12 o'clock Frontal  
11 o'clock 
1 o'clock Frontal Oblique 

2-3 o'clock 
9-10 o'clock Side 

Unknown Frontal 

C 

12 o'clock Frontal 
11 o'clock 
1 o'clock Frontal Oblique 

2-3 o'clock 
9-10 o'clock Other 

Unknown Frontal 

Unknown 

12 o'clock Frontal  
11 o'clock 
1 o'clock Frontal Oblique 

2-3 o'clock 
9-10 o'clock Other 

Unknown Frontal 
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Table 26. Impact direction definition (unknown CDC) 

CDC Variables ACCTYPE Impact 
Direction GAD1 SHL1 DOF1 

Unknown Any Unknown 21:23, 25:27, 29:31, 
35, 37, 39, 41 Rear 

 
Restraint use: Restrained occupants were those identified with seat belt or child restraint using 
the following NASS CDS restraint use variables: CHTYPE (1:8), MANUSE (2:8, 12:18), and 
ABELTUSE (1). 
 
Age group: Three age groups were used for fatality and AIS injury analysis: 0-15, 16-59, and 
60+. Analysis by cost and attributable fatality were not disaggregated by age since the 
parameters for these analyses represented average values across age groups.  
 
Sex: Results can be analyzed by sex (NASS CDS variable name SEX), with males coded with 
the variable of SEX=1 and females as SEX=2:6. 
 
Seat position: Drivers were identified using the seat position variable (NASS CDS variable 
name SEATPOS) coded as SEATPOS=11, front-seat passengers as SEATPOS=12:19, and rear 
row occupants identified as any occupant in a known seat position other than the first row 
(SEATPOS=21:59). 
 
Impact side: For side and frontal oblique impacts, front and rear seat occupants can be further 
broken down as near-side or far-side occupants (Table 27). 
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Table 27. Impact side definition for side or frontal oblique impact 

Impact  Impact 
Side 

SAS Coding Definition (NASS CDS Variables) 
Seat Position 

(NASS CDS Variable SEATPOS) CDC Variables 

Near-
side 
front 

Left 11 
GAD1=L or SHL1=L or DOF1 in (9 
o’clock to 11 o’clock) or (SHL1=Y & 
DOF1=Unknown) 

Right 13 
GAD1=R or SHL1=R or DOF1 in (1 
o’clock to 3 o’clock) or (SHL1=Z & 
DOF1=Unknown) 

Far-
side 
front 

Right 11 
GAD1=R or SHL1=R or DOF1 in (1 
o’clock to 3 o’clock) or (SHL1=Z & 
DOF1=Unknown) 

Left 13 
GAD1=L or SHL1=L or DOF1 in (9 
o’clock to 11 o’clock) or (SHL1=Y & 
DOF1=Unknown) 

Near-
side 
rear 

Left 21, 31, 
41, 51 

GAD1=L or SHL1=L or DOF1 in (9 
o’clock to 11 o’clock) or (SHL1=Y & 
DOF1=Unknown) 

Right 23, 33, 
43, 53 

GAD1=R or SHL1=R or DOF1 in (1 
o’clock to 3 o’clock) or (SHL1=Z & 
DOF1=Unknown) 

Far-
side 
rear 

Right 21, 31, 
41, 51 

GAD1=R or SHL1=R or DOF1 in (1 
o’clock to 3 o’clock) or (SHL1=Z & 
DOF1=Unknown) 

Left 23, 33, 
43, 53 

GAD1=L or SHL1=L or DOF1 in (9 
o’clock to 11 o’clock) or (SHL1=Y & 
DOF1=Unknown) 

 
Injury body region: Body region categories correspond to the AIS-coded body region with the 
exception of face and neck injuries (which were combined into one bin), and spinal injuries 
(which were separated by level) as listed in Table 28. For cases from NASS CDS 2010 and later, 
originally hard-coded with AIS 2005/08, the categorization was based on the body region and 
specific structure digits in the translated AIS 1990/98 code. For AIS 2005/08 codes without a 
recommended AIS 1990/98 translation code, the hard-coded AIS 2005/08 body region and 
specific structure digits were used to bin the injury by body region.  
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Table 28. Definition of injury region categories 

AIS 1990/98 Injury Code 
Injury Category in Projection Model Body Region 

(REGION90) 
Specific Structure 

(STRUSPEC) 
1 All Head 

2 or 3 All Face/Neck (includes all non-spinal neck injuries) 

4 All Thorax 

5 All Abdomen 

6 02, 50, 59 Cervical Spine 

6 04, 06, 60, 69, 70, 79 Thoracic/Lumbar Spine 

7 All Upper Extremity 

8 All Lower Extremity 

9 All Unspecified 

2.8 High Leverage Check 
Model results were affected by the original NASS CDS case weights for source cases, as well as 
by reweighting using NASS GES and FARS cases, and by the subsequent adjustments made to 
each case to apply trends and countermeasures included in the model. As in retrospective studies, 
there was potential for individual cases with high weight relative to other cases in a given 
category, i.e., high leverage cases, to unduly influence projection results. The potential effects of 
high-weight cases can become even more pronounced as data is disaggregated and analyses 
become more granular and focused on specific types of crashes. In a conventional retrospective 
NASS CDS study, analysis categories that could potentially be affected by high leverage cases 
can be identified by flagging calculations based on fewer than 10 to 20 individual cases in the 
source dataset, or those that rely on one or more particularly high-weight individual source cases. 
However, these strategies do not work for the analysis of projection results because the source 
cases have each been reweighted and divided into many pseudo-cases. 
 
Therefore, the trend-adjusted source cases were reviewed by analysis category to identify 
individual categories that appeared to be affected by high-leverage cases. This review occurred 
after trends were applied but before countermeasures were applied. Average case weight was 
calculated for the trend-adjusted source cases in each of 866 analysis categories that will be used 
ultimately for analysis of projected results (e.g., MAIS 3+ injured drivers in rollover crashes). As 
a first step, categories with high average case weight were identified. Next, cases in the identified 
categories were reviewed in detail to determine if one or more individual high-leverage cases 
could be unduly influencing the results for each identified category. 
 
The threshold for “high” average case weight varied by injury severity. Analysis categories that 
included low-severity cases had much higher average case weights than categories that included 
high-severity cases since lower-severity cases are assigned higher case weights in NASS CDS 
and they are further upweighted in the projection model to account for under-counting of cases 
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that are not reported to police or do not involve towed vehicles. Therefore, the threshold average 
case weight for further review of a category for high-weight cases was based on the distribution 
of case weights at each MAIS level. Figure 9 illustrates the distribution of case weights in the 
trend-adjusted datasets by MAIS severity. The sizes of the bubbles in the plot are proportional to 
the number of cases at each weight level. Also marked and listed in Table 29 are the mean 
weights for all cases at each severity level and the mean weight plus mean absolute deviation 
(mean + MAD) of the weights in each category. 

 
Figure 9. Bubble plot of case weight distribution for harm measures 

(Bubble size is proportional to the number of cases at a given weight in the trend-adjusted 
dataset) 

 
Table 29. Summary of all case weights in the trend-adjusted dataset by injury severity 

Case Severity Case Weight Mean Case Weight Mean + MAD 

All occupants 471 1017 
MAIS 1+ injured occupants 253 555 
MAIS 2+ injured occupants 19.2 42.2 
MAIS 3+ injured occupants 9.4 21.3 
MAIS 4+ injured occupants 7.7 16.5 
Fatally injured occupants 8.2 15.2 

 
To identify cases with high average case weight for further review, analysis categories with 
mean weight above the mean + MAD for its corresponding severity level were selected for 
scrutiny. For example, as shown in Table 30, the average case weight for analysis categories 
involving fatally injured occupants (such as fatalities by pre-crash scenario or fatalities by impact 
direction) were compared to the case weight mean plus MAD of 15.2 from Table 29. Categories 

1 10 100 1000 10000 100000
Weight

All occupants
MAIS1+
MAIS2+
MAIS3+
MAIS4+
Fatal
Mean
Mean+MAD
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of occupants with at least one injury assigned an estimated cost were compared to the case 
weight distribution for MAIS 1+ cases.  
 
Of the 866 sets of analysis categories reviewed, most had mean case weights within the mean + 
MAD for their corresponding severity levels in the trend-adjusted dataset. Only eight analysis 
categories had mean case weights greater than the mean + MAD for their corresponding severity 
level: 
 

• MAIS 3+ injured occupants, age 0-15 years in rear crashes (Figure 10),  
• MAIS 3+ injured occupants in the rear seat in rear crashes (Figure 11),  
• MAIS 3+ injured occupants in CUVs in all crashes, or disaggregated into frontal, frontal 

oblique, side, or rear crashes (Figure 12), and  
• MAIS 3+ injured occupants in vans in rear crashes (Figure 12). 

 
The mean case weight for all these categories exceeded the mean + MAD of 21.3 that was 
calculated across all MAIS 3+ cases. Each of these categories was reviewed to understand how 
high-weight cases in these categories could affect the reliability of results in these analyses. 
Figure 10 through Figure 12 show the average case weights for occupants in the categories under 
review.  
 
Three categories involving seriously injured occupants in rear crashes had especially elevated 
average case weights. All three of these categories included the same single case involving a rear 
impact with a child in the rear seat of a CUV. This single case had an original NASS CDS case 
weight of 1445.3,16 and was upweighted further by the trends applied in the model. Vehicle type 
trends, in particular, substantially increased this case’s weight since a relatively small number of 
CUV cases among the source cases were upweighted to represent the growing number of CUVs 
expected to be in the future fleet. This case weight had substantial leverage in these analyses 
because of the case’s high weight combined with the relatively small number of cases in these 
disaggregated analyses, essentially preventing analysis at this level of disaggregation. Therefore, 
this case was treated as an outlier, with the potential to distort results involving rear impact, rear 
seat, and child cases. 
 
Instead of completely removing the potential outlier case from the source dataset, this case was 
downweighted to reduce its high-leverage effects. The downweighting was applied at the stage 
of the model where cases were re-weighted to estimate national totals, described in Sections 
2.3.1 and 2.4.2. Thus, the whole model was re-run with the revised weight for this source case. 
The case weight of this potential outlier case was set to equal the mean weight for other cases in 
the bin of restrained, 0 to 15-year-old passengers with MAIS 3+ injuries. As shown in Figure 13, 
reweighting this single case brought the mean case weight of all analysis categories that had 
previously been flagged as involving potential high-leverage cases closer to the mean weights for 
MAIS 3+ injury cases (Figure 13). After the weight adjustment, the mean case weights for two of 
the three flagged analysis categories that included the outlier case (MAIS 3+ injured child and 
rear seat occupants in rear crashes) were below the thresholds set for their corresponding injury 
                                                 
16 The case was defined by NASS CDS case identification variables: YEAR 2015, PSU 43, CASENO 126, VEHNO 
2, OCCNO 3.  
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severity levels. The mean case weight for MAIS 3+ injured CUV occupants in rear crashes was 
improved, but still exceeded the threshold.  
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Table 30. Summary of high leverage check 

Harm and Analysis Subgroup No. of 
categories 

Compared to 
case weight 
distribution 
for severity 

level 

No. of 
categories 

with Avg Wt> 
Mean + MAD 

for 
corresponding 
severity level 

Occupants by pre-crash scenario 8 Occupants 0 
MAIS 2+ by pre-crash scenario 8 MAIS 2+ 0 
MAIS 3+ by pre-crash scenario 8 MAIS 3+ 0 
MAIS 4+ by pre-crash scenario 8 MAIS 4+ 0 
Fatalities by pre-crash scenario 8 Fatalities 0 
Cost by pre-crash scenario 8 MAIS 1+ 0 
Occupants by impact direction 5 Occupants 0 
MAIS 2+ by impact direction 5 MAIS 2+ 0 
MAIS 3+ by impact direction 5 MAIS 3+ 0 
MAIS 4+ by impact direction 5 MAIS 4+ 0 
Fatalities by impact direction 5 Fatal 0 
Cost by impact direction 5 MAIS 1+ 0 
MAIS 3+ by age & impact direction 18 MAIS 3+ 1 
MAIS 3+ by seat position & impact direction 18 MAIS 3+ 1 
MAIS 3+ by vehicle type & impact direction 30 MAIS 3+ 6 
Occupants by injury severity & impact direction 30 Occupants 0 
AIS 1+ by injury region & impact direction 54 MAIS 1+ 0 
AIS 2+ by injury region & impact direction 54 MAIS 2+ 0 
AIS 3+ by injury region & impact direction 54 MAIS 3+ 0 
Occupants by intersection type & pre-crash scenario 45 Occupants 0 
Occupants by road curvature & pre-crash scenario 18 Occupants 0 
Occupants by light condition & pre-crash scenario 27 Occupants 0 
Occupants by road type & pre-crash scenario 36 Occupants 0 
Occupants by surface condition & pre-crash scenario 18 Occupants 0 
Occupants by impact side & pre-crash scenario 12 Occupants 0 
MAIS 3+ by impact side & pre-crash scenario 12 MAIS 3+ 0 
MAIS 3+ by injury region & impact side 72 MAIS 3+ 0 
MAIS 2+ by sex  2 MAIS 2+ 0 
MAIS 3+ by sex  2 MAIS 3+ 0 
MAIS 4+ by sex  2 MAIS 4+ 0 
Fatalities by sex  2 Fatalities 0 
MAIS 2+ by sex, impact mode, & age 45 MAIS 2+ 0 
MAIS 2+ by sex, impact mode, & injury region 96 MAIS 2+ 0 
MAIS 3+ by sex, impact mode, & age 45 MAIS 3+ 0 
MAIS 3+ by sex, impact mode, & injury region 96 MAIS 3+ 0 

Totals 866  8 
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Figure 10. Average trend-adjusted case weights for MAIS 3+ injured occupants by age 

 

 
Figure 11. Average trend-adjusted case weights for MAIS 3+ injured occupants by seat position 

 
Figure 12. Average trend-adjusted case weights for MAIS 3+ injured occupants by vehicle type  
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The remaining MAIS 3+ categories with case weight mean + MAD exceeding the 21.3 case 
weight average for all MAIS 3+ cases were all disaggregated by vehicle type. These categories 
were vans in rear impacts and CUVs in almost all impact directions. The CUV categories did not 
appear to be affected by individual high-weight outlier cases, but instead seemed to be inflated 
by the overall upweighting of CUV cases in the application of vehicle type trends. Given this 
explanation for high average weight in these categories, results for these categories may be 
reasonable in spite of exceeding the mean case weight of MAIS 3+ cases overall but these results 
should be interpreted with caution.  
 
In contrast, the category involving rear impacts in vans did seem to be overly influenced by a 
single case. Although the weight of that single case was only 350 (after application of trends), 
the category included only 14 raw cases, which dramatically increased the influence of that 
single case. This result suggested that disaggregating down to this level (serious injury cases in 
van rear impacts) was simply not reasonable. Therefore, rather than downweight this single high-
leverage case (which did not appear to have high-leverage effects on any of the other analysis 
categories it affected), it was concluded that this category had an insufficient number of cases for 
analysis.  
 

 
Figure 13. Average case weights before (left) and after (right) downweighting high leverage case 

(involving child in rear of CUV in a rear impact) 
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In summary, of the 866 sets of analysis categories reviewed, most had mean case weights within 
the mean + MAD for their corresponding severity levels in the trend-adjusted dataset. This result 
suggested that the level of granularity in these disaggregated datasets was reasonable overall, and 
that analysis by multiple categories of variables is likely appropriate. Exceptions included 
analyses involving CUVs. These cases were substantially upweighted in the model so that 
categories of CUV cases may be estimated based on a relatively small number of high-weight 
cases, which suggests that results should be used cautiously. Caution is also needed when 
interpreting any crash categories that are broken down by both vehicle type and impact direction. 
In particular, analyses of low case-count categories, such as rear impacts in vans may have 
insufficient numbers for analysis.  
 
In addition to the quantitative analysis that identified the eight categories above exceeding the 
case weight mean + MAD for comparable cases at the same injury severity, average case weight 
in comparable categories was also reviewed qualitatively for the 866 analysis categories in Table 
30. This qualitative review showed that MAIS 3+ injured occupants with thoracic-lumbar (T/L) 
spine injuries in frontal crashes was another category that had a relatively high mean case weight 
(Figure 14). Although this average case weight was lower than the mean plus MAD threshold for 
MAIS 3+ cases, it was higher than weights for comparable analysis categories. Several higher-
weight cases contributed to this high mean weight, rather than a single outlier case. While the 
average weight was not dramatically different from comparison categories, and downweighting 
of source cases did not seem warranted, this high average weight suggested that conclusions 
regarding thoracic-lumbar spine injuries in frontal crashes in the projection models be made 
cautiously. 
 

 
Figure 14. Average case weights for MAIS 3+ injured occupants by body region 
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3 Model Evaluation Against Crashes and Injuries in 2013–2015  

3.1 Model Evaluation Objective and Method 
The accuracy of the model projections for 2020 to 2030 cannot be validated using current crash 
and injury data. Therefore, the capability of the projection model to predict future crash and 
injury outcomes was evaluated by applying the same model methodology to a historical dataset 
for the projection of 2014 crash outcomes. Where the main projection model relies primarily on 
crash, vehicle, and population data from 2004 to 2015 to predict crash frequency and outcome in 
2020 to 2030, the evaluation version of the model relied on retrospective data from 2004 to 2012 
to predict 2014 crash frequency and outcomes (Figure 15). Predicted 2014 results were then 
compared to real-world results averaged over a 3-year period from 2013 to 2015 to evaluate the 
model’s ability to identify future crash safety issues. An averaged 3-year period was necessary to 
approximate a comparison dataset for 2014 results because a single year of crash data has an 
insufficient number of cases for analysis. 
 
The goal for the evaluation model was to replicate the function of the model in all respects, 
except that the evaluation version predicted outcome in 2014 rather than in a future year, 
allowing for comparison of the predicted outcome to actual, real-world outcomes. However, 
predicting outcome in 2014 for comparison to averaged 2013 to 2015 real-world data 
necessitated a number of adjustments to the structure of the model design (Table 31). The most 
obvious change in the evaluation model was that 2013 to 2015 cases in the retrospective dataset 
could not be used to make the projection. Therefore, the evaluation projection was based on 
NASS CDS cases from 2004 to 2012. For reweighting procedures in the evaluation version of 
the model, the 2013 to 2015 NASS GES and FARS cases used in the projection model were 
replaced with cases from 2010 to 2012.  
 
Application of the evaluation model was complicated by the fact that the 2013 to 2015 NASS 
CDS data used to develop a dataset for comparison did not include any occupants in vehicles 10 
years old or older.17 In the full projection model, case occupants in early model vehicles 
(MY<2005) in the retrospective dataset were weighted to represent cases in older vehicles (older 
than 16 at the time of the crash) in the future crashes. However, since the 2013 to 2015 
comparison dataset had no occupants in vehicles older than 9 years old at the time of the crash, it 
had no cases in vehicles 10 years old or older and very few occupants in early model (MY<2005) 
vehicles. Therefore, cases in vehicles older than 9 years old and cases in MY<2005 vehicles 
were also excluded from the evaluation projection model. Thus, the projected 2014 dataset was 
based on 2004 to 2012 retrospective occupant cases in 0- to 9-year-old MY2005+ vehicles. 
These retrospective cases were reweighted using the same reweighting procedures used in the 
full projection model (see Section 2.3), with cases from 2010 to 2012 FARS and GES that were 
limited to occupants in vehicles that were MY2005+ and were 0 to 9 years old at the time of the 
crash.  
 
The limitations on vehicle age and model year in the evaluation version of the model were 
necessary to ensure that the evaluation was based on the same source data (NASS CDS, NASS 

                                                 
17 Starting in crash year 2009, NASS CDS does not contain injury data for occupants in vehicles 10 years old or 
older at the time of the crash and occupants without injury data were not included in the VRTC projection model.  
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GES, and FARS) as the original projection model. The only crash-years available for the 
evaluation were the 2004 to 2015 datasets that were used to develop the projection model. Later 
crash-years were not available because crash year 2015 was the last full year for which NASS 
CDS and GES cases were available, and the model is not currently structured to use more recent 
CISS and CRSS cases. Earlier crash-years were not available because crashes prior to 2004 
would not have included any of the MY2005+ vehicles that were used in the evaluation. 
Therefore, the data from the 2004 to 2015 crash-years had to be divided into a 2004 to 2012 
dataset to make a 2014 projection and a 2013 to 2015 comparison dataset to evaluate the 
projection. A total of 18,816 raw NASS CDS occupant cases were available for the 2004 to 2012 
dataset of cases in 0 to 9 y.o. MY2005+ vehicles and 7,490 raw NASS CDS occupant cases were 
available for the 2013 to 2015 comparison dataset. A resulting limitation of this method for 
evaluating the reliability of the model is that projections had to be made using fewer crash data 
years than were used in the full projection model. A related limitation is that the 3-year 
comparison dataset was very small compared to a typical data search that would use 10 or more 
years of case data to characterize national results. Therefore, the 2013 to 2015 comparison 
dataset could only be used to evaluate broad categories of crashes and outcomes in the evaluation 
version of the model. There were simply not enough cases in the 2013 to 2015 comparison 
dataset to disaggregate it by multiple categories such as seat position and impact direction, or age 
and pre-crash scenario. Even disaggregated by broad categories such as impact direction, the 
comparison data must be interpreted carefully because of the relatively small number of cases in 
this 3-year dataset, which led to low cell count when disaggregated. In other words, the 
evaluation version of the model cannot be used to definitively validate the model, but instead 
was used to get a broad assessment of the model’s reliability. Crash categories where the 
predicted crash outcomes varied from the real-world results should flag crash types that need to 
be examined closely and interpreted with caution, but such mismatches should not automatically 
invalidate the projection model results. 
 
The trends and countermeasures applied to the evaluation model cases included all the same 
trends and countermeasures to be applied to the full projection model. However, while the AF 
used for each trend and countermeasure in the full projection model were based on parameters 
and penetration rates relevant to the stepping-stone dataset years of 2013 to 2015 and the 
projection years of 2020, 2025, and 2030, the evaluation version of the model relied on estimates 
of these parameters for the stepping-stone dataset years of 2010 to 2012 and for the projection 
year 2014. The datasets used to develop the projection datasets and the evaluation version of the 
dataset are compared in Table 31.  
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Figure 15. Design of the evaluation version of the model 
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Table 31. Data years used in evaluation model compared with those used in projection model 

                                                 
18Although the values used to calculate the AF for driver and passenger crash exposures in the evaluation model 
were calculated primarily based on estimates projected for 2014, the estimated increase in the proportion of cases 
that would involve 0- 9-year-old MY2005+ vehicles was averaged over 2013 to 2015 to be compatible with the real-
world 2013 to 2015 dataset ultimately used for comparison. 

 Projection Evaluation 

Target output year 2020 2025 2030 2014 

Baseline retrospective dataset 
for comparison 

2004-2015 NASS CDS 
Reweighted with 2004-2015 NASS GES & 

FARS 

No baseline  
retrospective 

Source dataset for projection 2004-2015 CDS  
Reweighted with 2004-2015 NASS GES & 

FARS 
2004-2012 CDS 

Subsets of projection dataset 
by model year 

MY<2005 
MY2005+ MY2005+ only 

Reweighting datasets for 
stepping-stone dataset 

GES: 2013-2015 
FARS: 2013-2015 

GES: 2010-2012 
FARS: 2010-2012 

Vehicle age range used for 
GES/FARS cases for 
reweighting the older MY 
subset (MY<2005) 

16+ y.o. 16+ y.o. 16+ y.o. Not included 

Vehicle age range used for 
GES/FARS cases for 
reweighting the newer MY 
subset (MY2005+) 

0-15 y.o. 0-20 y.o. 0-25 y.o. 0-9 y.o. only 

Years used for ratio of 
projected/past rates to 
calculate trend AF for driver 
and passenger crash 
exposures 

2020
2013 − 2015

 
2025

2013 − 2015
 

2030
2013 − 2015

 2014 & 2013 − 201518

2010 − 2012
 

Years used for ratio of 
projected/past rates to 
calculate trend AF for 
restraint use 

2020
2013 − 2015

 
2025

2013 − 2015
 

2030
2013 − 2015

 
2014

2010 − 2012
 

Dataset used to establish 
proportion of vehicle type in 
past relative to projection 
year 

2020 
Stepping-

Stone 

2025 
Stepping-

Stone 

2030 
Stepping-

Stone 

2014  
Stepping-Stone 

Real-world data for 
evaluation of accuracy 

None 
available 

None 
available 

None 
available 

2013-2015 Comparison 
Dataset 

NASS CDS (reweighted 
with GES and FARS 

2013-2015) 
MY2005+, 0-9 y.o.  
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Countermeasures developed as “hypothetical” to explore the potential effect of safety measures 
that are not implemented and whose future likelihood of being implemented is unknown (e.g., 
distraction reduction) were not included in the evaluation version of the model. Although the 
evaluation version of the model was coded with all other (non-hypothetical) countermeasures, 
only those defined to have been implemented or begun penetrating by 2014 actually had any 
effect on the results. The countermeasures defined in the model with penetration greater than 0 
percent by 2014, i.e., the countermeasures expected to affect the evaluation results, are listed in 
Table 32. The parameters used to apply each of these countermeasures in this version of the 
model are detailed in the countermeasure appendices of this report (Appendix C, D, E, and F). 
These appendices include definitions of the target population for each countermeasure, estimates 
of countermeasure effectiveness and penetration, and the information sources used to define 
these parameters. Summaries of all remaining countermeasures, including those to be used in 
applications of the model to explore the effects of future, hypothetical, or optional 
countermeasures will be included in the upcoming projection model results report (Mallory et al., 
in press) and/or any future reports for models that incorporate new or updated countermeasures 
for the first time. 
 
The procedures designed to upweight lower-severity cases (to account for the exclusion of non-
towed cases in NASS CDS and the under-reporting of low-severity cases to police) were applied 
in the evaluation version of the model, since the default for the model was to turn these optional 
steps “on.”  

Table 32. Countermeasures affecting evaluation version of the model 

 Countermeasures & Standards Updates 

Crash avoidance countermeasures  
(Appendix C) 

FMVSS No. 126 (ESC), FMVSS No. 138 
(TPMS), NCAP 2004 update to rollover 
resistance, AEB with FCW, BSD, LDW 

Crash mitigation countermeasures 
(Appendix D) 

FMVSS No. 138 (TPMS), CIB component of 
AEB 

Crashworthiness and occupant protection 
(Appendix E) 

FMVSS No. 202 (Head Restraint), 208 (Advanced 
Air Bag), 214 (Side Impact), 216 (Roof Strength), 
226 (Ejection Mitigation), 301 (Rear Impact), and 
NCAP 2011 update to front and side protection 

Program and Infrastructure changes 
(Appendix F) 

Maximum speed limit increases, red light 
cameras, rumble strips, cable median barriers 

3.2 Model Evaluation Results 
The results of the evaluation model, affected by all the trends coded in the model, as well as the 
countermeasures listed in Table 32, are shown in Figure 16 through Figure 22. The plots show 
the predicted outcome for crash year 2014 after countermeasures were applied to the model (Full 
Model projections, in blue). The Full Model projections for crash year 2014 can be compared to 
the corresponding average annual estimates for the 2013 to 2015 comparison dataset (in green) to 
evaluate the reliability of the model projection. All results are limited to occupants in vehicles 
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that are less than 10 years old, since the comparison data was based on 2013 to 2015 NASS CDS 
cases, which have no injury data for occupants of older vehicles. 
 
When aggregated across all crash and occupant types, the overall distribution of injury severity 
in the projected full model dataset was compared to the real-world 2013 to 2015 point estimates 
for the annual number of cases and rate of injury at each severity level in Figure 16. All 
projected values were well within the 95 percent confidence intervals (CI) shown for the 2013 to 
2015 comparison dataset. The projections for all injury levels slightly underpredicted the real-
world values, but never by more than 8.1 percent. 
 

 

  
 
 Percentage Difference Between Projected and 

2013-2015 Comparison Dataset (Retrospective) 
Fatality MAIS 4+ MAIS 3+ MAIS 2+ 

Number -5.9% -5.6% -8.1% -6.9% 
Rate -2.0% -1.7% -4.3% -3.0% 

Figure 16. Average annual injury frequency and rate by MAIS in evaluation model 
 (95% CI shown for retrospective data only) 

 
Figure 17 shows the total number of occupants in the dataset by pre-crash scenario, based on 
Swanson’s crash-type taxonomy (Swanson et al., 2016). For every scenario, the projected annual 
number of occupants was within the 95 percent confidence interval for the annual number 
estimated from the 2013 to 2015 comparison dataset. Although some crash types were 
overestimated by the model (e.g., opposite direction crashes were 20.7% overestimated and lane 
change crashes were 12.0% overestimated), others were underestimated by the model (e.g., road 
departure and control loss cases were underestimated by more than 15%). However, the relative 
frequency of different crash types was similar in the projected data and the comparison 2013 to 
2015 dataset. With the exception of occupants in crashes classified as “other,” the rank-order of 
the number of crashes in each category in the projection matched the rank-order for the 
comparison dataset.  
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Figure 17. Average annual frequency of occupants in crashes by pre-crash scenario  
(LTAP/OD=left turn across path/opposite direction) 

 
When the number of occupants in crashes was estimated by impact direction, the model 
estimates for 2014 were within the 95 percent confidence intervals for each planar impact 
category in the 2013 to 2015 comparison data. However, the projected number of rollover 
occupants overestimated the actual number documented in the 2013 to 2015 comparison dataset 
by 37.9 percent, exceeding the 95 percent confidence intervals on the comparison data. Relative 
to the point estimates for the 2013 to 2015 comparison dataset, the projected number of 
occupants in rear impact was high and the projected numbers of occupants in side and frontal 
oblique impact crashes was low, but still within the 95 percent confidence intervals. With respect 
to relative frequency by impact direction, side impact cases were more frequent than frontal 
oblique cases in the 2013 to 2015 comparison dataset, while the opposite was projected by the 
model. 
 
Limiting the analysis to serious injury cases (MAIS 3+), the projected number of injured 
occupants was within the confidence interval of the estimated number for each impact direction 
in the comparison 2013 to 2015 dataset (Figure 19, left). Among projections of injury rate by 
impact direction (Figure 19, right), only the side impact rate of serious injury was outside of the 
confidence interval for the estimate of the injury rate in the 2013 to 2015 comparison dataset. 
While the estimated real-world rate of serious injury in side impacts in 2013 to 2015 was 0.15 
percent (95% CI: 0.11-0.19%), the model-projected rate was 0.27 percent, an 82.8 percent 
overestimate. Additionally, although the projection suggested side impact was more frequent 
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than frontal oblique crashes, the 2013 to 2015 comparison dataset showed that frontal oblique 
crashes were more frequent than side impacts. 
 

 
 Percentage Difference Between Projected and 2013-2015 Comparison 

Dataset (Retrospective) 

Rollover Frontal 
Oblique Frontal Side Rear 

Number 37.9% -14.3% -7.3% -28.6% 20.7% 
Figure 18. Average annual frequency of occupants in crashes by impact direction 

 

 
 Percentage Difference Between Projected and 2013-2015 Comparison 

Dataset (Retrospective) 

Rollover Frontal 
Oblique Frontal Side Rear 

Number 5.5% -14.3% -18.7% 30.5% 12.8% 
Rate -23.5% 0.0% -12.3% 82.8% -6.5% 

Figure 19. Average annual frequency and rate of MAIS 3+ injury cases by impact direction 
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Although it is possible to further disaggregate the evaluation results, uncertainty in the 3-year 
comparison dataset grows as the number of cases in each bin is reduced. For example, when the 
results in Figure 19 were further explored by projecting the number and rate of injuries of several 
injury severities by impact direction, the 3-year dataset had progressively smaller numbers of 
source cases for comparison to higher-severity injuries, particularly for the rollover and high-
severity rear impact categories. In spite of this uncertainty, the results were useful for evaluating 
whether the projection results were generally reasonable across impact direction and injury 
severities. The comparison of frontal, frontal oblique, and rear impact projections to the 2013 to 
2015 comparison dataset showed that projected injury frequency and rate were within the 95 
percent CI for both injury frequency and rates (shown only for frontal and frontal oblique 
frequency in Figure 20).  

 
 Percentage Difference Between Projected and 2013-2015 Comparison 

Dataset (Retrospective) 
Fatality MAIS 4+ MAIS 3+ MAIS 2+ 

Frontal -32.4% -23.7% -18.7% 0.5% 
Frontal 
Oblique -31.7% -23.9% -14.3% -20.3% 

Figure 20. Average annual frequency of injury cases in frontal and frontal oblique crashes 

In contrast, analysis of side impacts and rollovers showed that the projection model estimates for 
these crash types were not all within the 95 percent CI of the comparison retrospective data at all 
severity levels. For side impacts, although frequency was within the 95 percent CI for all injury 
severity levels, the point estimate for the rate of injury was overestimated by the projection 
model at every level of severity, and for MAIS 3+ and 4+ injuries, the rate of injury was outside 
of the 95 percent CI for the 2013 to 2015 comparison dataset (Figure 21). For rollovers (Figure 
22), the projected number of rollover occupants with MAIS 2+ injuries was overestimated 
relative to the 2013 to 2015 95 percent CI, consistent with the overall overestimate of rollover 
occupants shown in Figure 18. In contrast, the projected rates of all injury categories in rollovers 
fell at the lower ends of the 2013 to 2015 95 percent CIs. Overall, the projection overestimated 
the number of rollover cases but underestimated the injury rates in those rollovers, particularly 
for the highest-severity injuries. These results suggest that the rollover countermeasures coded in 
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the model may be overestimating improvements in higher-severity rollovers but possibly 
underestimating the improvements in lower-severity rollovers. 

 
 Percentage Difference Between Projected and 2013-2015 Comparison 

Dataset (Retrospective) 
 Fatality MAIS 4+ MAIS 3+ MAIS 2+ 
Number 10.0% 27.6% 30.5% -7.8% 
Rate 54.0% 78.7% 82.8% 29.2% 

Figure 21. Average annual frequency and rate of injury cases in side impact crashes 

 
 
 

 Percentage Difference Between Projected and 2013-2015 Comparison 
Dataset (Retrospective) 

 Fatality MAIS 4+ MAIS 3+ MAIS 2+ 
Number -37.9% -18.4% 5.5% 15.6% 
Rate -55.0% -40.9% -23.5% -16.2% 

Figure 22. Average annual frequency and rate of injury cases in rollover crashes 
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3.3 Analysis of Mismatches in Evaluation Projection and Real-World Comparison 
The mismatches between the projections and the retrospective 2013 to 2015 comparison dataset 
(Figure 18, Figure 21 and Figure 22) flagged potential questions for projections related to 
rollovers and to side impact crashes.  
  
For the rollover projections, the 3-year comparison dataset was developed based on only 278 
source cases, of which only 65 involved serious or worse injuries (MAIS 3+) injury and only 26 
were fatal. This relatively small number of cases in the comparison dataset makes it difficult to 
draw definitive conclusions about the accuracy of the projections, other than to suggest that the 
model projections may be overestimating the number of less severe rollovers. While this 
ambiguity should be considered when interpreting model results involving rollover, it was not 
deemed certain enough to motivate a correction or adjustment to the model to decrease the 
projected number of rollovers in future projections. 
 
For side impact projections, which were based on a larger number of source cases, the results 
suggested that the 2013 to 2015 comparison dataset needed more detailed scrutiny to understand 
if the mismatch between the projection and the comparison data flagged an issue with the 
model’s projections of side impact crashes or with the real-world comparison data.  
 
The validity of the 2013 to 2015 side impact estimate from the comparison data was explored by 
analyzing the dataset used to develop it. The comparison dataset for side impacts in 2013 to 2015 
was comprised of 1,566 source cases including 741 serious injury cases (MAIS 3+) and only 212 
fatal cases. This dataset showed unusually inconsistent year-to-year results, with the MAIS 3+ 
injury rate in 2014 dropping to about a third of the rates calculated for other individual data years 
between 2010 and 2015 (Figure 23). In contrast, the rate of AIS 2+ injury among side-impact 
occupants in 2014 was almost double the rate estimated for other individual years (Figure 23). 
Since the 2013 and 2015 injury rates in side impact were reasonably consistent with annual 
injury rates prior to 2013, it was suspected that the side impact results from 2014 could be 
spurious.  
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Figure 23. Average annual rates of side impact injury in NASS CDS source datasets 

 as percentage of all occupants in side impacts 

 
Annual spikes and dips in annual crash data are not unusual and would not be problematic in 
typical analyses based on ten or more years of data but may be misleading in the current analysis 
that uses only 3 years of crash case data for comparison. Such a small sample of cases can lead to 
inaccuracy in aggregated results. Although review of potential improvements in side impact 
protection suggested there may have been improvements that could have contributed to better 
side impact outcome than those projected by the model, investigational modeling of these 
improvements showed that none could reasonably have produced projections close to the 
estimates made by the 2013 to 2015 retrospective data. Therefore, it was more likely that the 
mismatch resulted primarily from inaccuracy in the relatively small survey-sampled 2013 to 
2015 comparison dataset.  
 
Therefore, no correction was made in the model to adjust rollover or side impact projections in 
response to the evaluation findings.  

3.4 Discussion of Evaluation Model Results 
Since there was no future dataset available to validate the results of the projection model, this 
evaluation split the source data years used in the model to compare a projection made using 2004 
to 2012 to a real-world comparison dataset from 2013 to 2015. This method was a compromise 
in that it reduced the data available to make the projection in order to reserve a small number of 
cases to use as real-world comparison data. Reducing the number of data years in the source 
dataset for the evaluation model made the evaluation conservative in that the additional cases 
available in the full model would be expected to improve its reliability. Using only three years of 
data for the comparison dataset limited detailed analysis since these relatively small case datasets 
could not be broken down by multiple variables. Even broad analyses of these cases must be 
interpreted carefully because of the limited number of cases in this 3-year dataset. Furthermore, 
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it was likely that a near-term projection was likely to be more accurate than the longer-term 
projections required to estimate outcome in 2020 to 2030. Nonetheless, the projection of 2014 
crashes was the best option available to reasonably evaluate the overall reliability of the 
projection model results in the absence of data for true validation of the model projections. While 
the evaluation version of the model cannot be used to definitively validate the model, it can be 
used to broadly assess the potential reliability of the modeling methods. Crash categories for 
which the predicted crash outcomes varied from the 2013 to 2015 comparison datasets in the 
evaluation were analyzed in more detail, without automatically assuming that the evaluation 
model results invalidated the projection model. 
 
Overall reliability of the model relative to the 2013 to 2015 comparison dataset was assessed by 
(1) comparing projection point estimates to the 95 percent confidence interval for the 2013 to 
2015 comparison dataset, and (2) comparing the relative ranking of injury frequency and severity 
for different crash types between the projected and 2013 to 2015 comparison datasets, i.e., 
determining whether the projection model and the comparison datasets prioritize crash types in 
the same order.  
 
Overall, the evaluation suggested that the projections were reasonable, insofar as the relatively 
small dataset of 2013 to 2015 comparison cases could be used to assess the reliability of the 
model. The only crash categories where the injury projections appeared to be outside of the 95 
percent confidence intervals for the 2013 to 2015 comparison dataset were side impact injury 
rates for MAIS 3+ and 4+ injuries, and the frequency of overall rollovers and rollovers with 
MAIS 2+ injury. In terms of identifying relative relationships, i.e., the ranking of categories 
according to future injury frequency, the only one of these mismatches that led to a potentially 
important change in the relative ranking of results was the side impact category. The projected 
results indicated total occupants involved in oblique impacts would outnumber those in side 
impacts, while seriously injured occupants in side impacts would outnumber those in oblique 
impacts. In fact, these relationships were swapped in the 2013 to 2015 comparison dataset, with 
more occupants involved in side impact crashes overall, but more seriously injured occupants in 
oblique impacts. 
 
Specific results identified by the model as potentially contradicting the 2013 to 2015 comparison 
results were scrutinized in more detail and corrective countermeasures to adjust the model results 
to match the comparison results were considered. For rollover projections, the 3-year comparison 
dataset was determined to be comprised of too few cases to be used reliably to try to adjust or 
“correct” rollover projections. Analysis of the comparison dataset for side impacts in 2013 to 
2015 showed unusually inconsistent year-to-year results, with 2014 results appearing so atypical 
that they had the potential to skew the 3-year average annual results used as the comparison 
dataset. This 2013 to 2015 comparison dataset was not determined to be sufficiently reliable to 
be used to adjust or “correct” side impact projections.  
 
For all crash categories, but particularly for those identified as outside or near the boundaries of 
the confidence intervals of the 2013 to 2015 comparison dataset, model parameters affecting 
these types of crashes should be reviewed and updated as new information becomes available 
regarding any potentially related trends or countermeasures. 
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4 Discussion 
The objective of the projection model is to provide estimates of the specific types of crashes and 
injuries that are still expected to be frequent in the years beyond those for which retrospective 
data is available and into the future. The model is also designed to identify the occupants 
expected to be most vulnerable to those crashes and injuries. The projections produced by the 
model are based on the current understanding of safety technology and transportation trends. The 
resulting “peaks” in the output data are intended to allow researchers to prioritize the most 
critical crashes, injuries, and scenarios in developing and evaluating future injury prevention 
strategies. The model can also be used to explore the effects of changing predicted parameters 
expected to affect the frequency and outcome of future crashes. 
 
While it would be unreasonable to expect perfect accuracy in a projection model that was 
developed from a large number of individual predictions and forecasts, the goal was to apply the 
available data as precisely as possible in order to make the best possible future projections. This 
section compares the strategies used in the model to other modeling efforts, summarizes results 
of the evaluation of the model, describes the limitations inherent to all predictive models and to 
this one in particular, and discusses potential applications of the model.  

4.1 Comparison With Previous Projection Modeling Methods 
Previous comprehensive projection models have been developed by UMTRI (Flannagan & 
Flannagan, 2007, 2009), Strandroth et al. (2016), and Autoliv (Lubbe et al., 2018; Östling et al., 
2019a; Östling et al., 2019b; Östling et al., 2020) to make broad estimates of the crashes and 
injuries still expected to remain after the introduction of a wide range of safety improvements. 
Researchers from Toyota and Virginia Tech/Wake Forest University have developed a number 
of individual models of specific crash types and scenarios with similar goals (Bareiss et al., 
2019; Riexinger et al., 2019a; Riexinger et al., 2019b)19 as well as a comprehensive model to 
estimate residual safety problems after deployment of an integrated safety system (Sherony & 
Gabler, 2020). A more focused effort by TU Dresden (Liers & Unger, 2019) modelled the 
crashes expected to remain after application of Level 2 and Level 3 ADS systems, without 
addressing other contemporaneous safety improvements or trends. All five research efforts are 
based on retrospective counts of injury cases, adjusted to reflect the predicted effectiveness of 
safety countermeasures in the future, as was the case for the projection model described in this 
report (hereafter in section 4.1 referred to as the “VRTC projection model” for ease of 
comparison to the other models). Other aspects of these modeling efforts differ substantially 
from the VRTC projection model. This section highlights the similarities and differences among 
the comprehensive models that report on future crashes and injuries across all impact types, 
accounting for many safety interventions and countermeasures: UMTRI, Strandroth, Autoliv, 
Toyota/Virginia Tech/Wake Forest, and VRTC. 
 
The source retrospective cases used in the UMTRI model are from NASS GES (with different 
versions of the model using different ranges of input year), while the Strandroth model uses 2014 
data from the Swedish STRADA dataset, and the Autoliv methods have been applied to the 1999 

                                                 
19 Also includes personal communications with Rini Sherony, Collaborative Safety Research Center, TEMA (Toyota 
Motor Engineering and Manufacturing North America, Inc.), Ann Arbor, MI, and H. Clay Gabler, Center for Injury 
Biomechanics, Virginia Tech, Blacksburg, VA, personal communication, November 9, 2017. 
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to 2016 German GIDAS dataset (Lubbe et al., 2018; Östling et al., 2019a) as well as to 1995 to 
2015 NASS CDS data (Östling et al., 2019b). The Toyota/Virginia Tech/Wake Forest model 
used 2015 NASS CDS and GES for its source data (Sherony & Gabler, 2020). In comparison, 
the VRTC projection model uses 2004 to 2015 NASS CDS as a source dataset, reweighted with 
fatal cases from FARS and nonfatal cases from NASS GES. This broad range of data years was 
selected in the VRTC projection model to maximize the number of cases available for analysis 
by crash and occupant sub-type.  
 
UMTRI’s Unified Tool for Mapping Opportunities for Safety Technology, referred to as 
UTMOST in this report, provides output in terms of person, injury, and fatality counts. In 
comparison, the Autoliv approach reports outcome in terms of the number of crashes with at 
least one moderate or worse (AIS 2+) injury in the NASS CDS study and in terms of fatalities in 
the GIDAS study. The Toyota/Virginia Tech/Wake Forest results are reported in terms of 
numbers of crashes and occupants with MAIS2+F injuries. In Strandroth’s study, estimates were 
based on RPMI (Risk of Permanent Medical Impairment). The case-by-case methods used in the 
VRTC projection model allows analysis of future projection cases by any harm measure that can 
be estimated using injury data supplied in NASS CDS, including fatality, AIS severity, or cost. 
Incorporation of disability estimates such as RPMI or FCI (Functional Capacity Index) is also 
planned in future updates to the VRTC projection model. The reason for the additional injury 
detail available in the VRTC projection model is that countermeasure effects are applied to 
individual injuries in each case rather than as an overall reduction in injury severity for the case.  
 
The overall strategies used in the Strandroth, Autoliv, and Toyota/Virginia Tech/Wake Forest 
models are similar to those used in the VRTC projection model in that effectiveness estimates 
are applied on a case-by-case basis to the retrospective datasets, with the future effects reflected 
by reductions in crashes or injury in the projections. In Strandroth’s study, each individual’s 
RPMI was calculated as a function of their AIS-coded injuries in the 2014 crash. Each 
individual’s reduced RPMI in a 2020 crash was calculated as follows (Equation (26)): 
 
 𝑈𝑈𝑃𝑃𝐶𝐶𝑅𝑅2020 = 𝑈𝑈𝑃𝑃𝐶𝐶𝑅𝑅2014 × �(1 − �𝑃𝑃𝑎𝑎(𝑅𝑅) × 𝑈𝑈𝑈𝑈𝑎𝑎�)

𝑎𝑎

 (26) 

where: 
P(I) is the probability for an intervention to be implemented in 2020, and 

RR is the intervention’s risk-reducing factor given the crash circumstances and injury level, calculated 
for all j interventions for which the given case is in the target population. 

 
In the Toyota/Virginia Tech/Wake Forest model, the source CDS cases are binned into mutually 
exclusive target populations for each of the countermeasure technologies or combinations of 
technologies. Effectiveness estimates are developed by modeling real-world cases in the target 
population. The source cases are from 2015 NASS and data to develop individual 
countermeasure effectiveness estimates are drawn from the National Motor Vehicle Crash 
Causation Survey, EDR data, the Virginia Tech Transportation Institute’s VTTI 100 dataset, and 
the Strategic Highway Research Program’s SHRP2 NDS dataset. Specific effectiveness for sub-
types of cases within the target population are developed where possible. Where a 
countermeasure is expected to eliminate a percentage of cases, all cases in the target population 
are downweighted proportionally as in the VRTC model. However, where a countermeasure is 
expected to reduce impact speed, risk curves predicting the risk of injury by speed are used to 
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estimate the likelihood of injury at the expected reduced speed for each case (Bareiss et al., 
2018).  
 
In Autoliv’s study, conservative and optimistic rulesets were defined for each countermeasure to 
define the cases potentially affected by a countermeasure. The optimistic ruleset for rear impact 
AEB, for example, applied this countermeasure to relevant crash types where the driving speed 
difference between the vehicles was less than or equal to 100 km/h. In contrast, the conservative 
ruleset applied the countermeasure to relevant crash types where the driving speed difference 
was less than or equal to 70 km/h and where weather was fine and there was no ice and snow on 
road, poor road conditions, or unstable vehicle conditions. All cases covered by the ruleset for 
any countermeasure were counted as prevented. 
 
UTMOST, the UMTRI model, uses a very different strategy. The most recent update relies on 
logistic regression models to predict the risk of AIS 3+ injury to project future changes in the 
total number of MAIS 3+ occupants/injuries that would result from implementation of 
countermeasures. The regression models include covariates for delta V, occupant age and sex, 
belt restraint, vehicle type, and alcohol involvement so that the effect of countermeasures on any 
of these parameters can be used to adjust the model. For example, these models can be used to 
estimate the reduction in the number of AIS 3+ injuries based on a hypothesized shift in the delta 
V distribution within a population of crashes resulting from a severity mitigation 
countermeasure. Similarly, the effect of an increased percentage of belted individuals in a 
segment of the population can be estimated using these models. The UTMOST model was 
structured so that an interactive version of the model (available at http://utmost.umtri.umich. 
edu/) allows the user to adjust the predicted effectiveness of any combination of included 
countermeasures and to override predicted levels of restraint use. As of February 2021, 22 
countermeasures were available in the model. 
 
While the regression methods used in the UMTRI model offer computational advantages that 
allow for interactive use, they apply the effects of countermeasures as a percentage of very broad 
groups of cases. In contrast, the case-by-case methods used in the VRTC, Strandroth, and 
Autoliv models facilitate more specific application of countermeasures to defined target 
populations. These case-by-case methods are flexible in that each case can be in the target 
population for any combination of countermeasures, without double-counting. 
 
The Strandroth model, the UMTRI model, and the Toyota/Virginia Tech/Wake Forest model all 
cover vulnerable road users (motorcyclists, pedestrians, and bicyclists) while the VRTC 
projection model is limited to the vehicle occupants included in NASS CDS and the Autoliv 
studies focus on passenger vehicle occupants in the NASS CDS and GIDAS studies. In the 
VRTC projection model, output can be analyzed by vehicle seat position. The Strandroth, 
UMTRI, and Autoliv models cover all vehicle occupants but do not break results down by seat 
position. The Toyota/Virginia Tech/Wake Forest model includes only front seat occupants. 
Expansion of the VRTC projection model to include vulnerable road users would be valuable. 
 
The passenger vehicle interventions included in Strandroth et al.’s analysis were seat belt 
reminders, electronic stability control, lane-keeping assist, autonomous emergency steering and 
braking, pedestrian protection, and a single broad category of “crashworthiness” interventions. 
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Interventions for heavy-goods vehicles, powered two-wheelers, and infrastructure were also 
included. Estimated target populations, risk-reducing factors, and probability of implementation 
by model year were tabulated along with references for source data. Data was drawn from 
literature where available, as well as from information from manufacturers, industry and Swedish 
government experts.  
 
In the UMTRI model, the countermeasures, which continue to be updated, are primarily crash 
avoidance technologies. Policy measures in the model include graduated licensing, and laws 
related to seat belt and helmet use. In 2020 new categories added included the effects of “vehicle 
age,” as well as “seat position population,” which allowed users to adjust the proportion of 
occupants facing forward, rearward and to one side in anticipation of changing seating 
configurations in automated vehicles. For some countermeasures, a single effectiveness value 
applies, while for others different values apply to different populations/scenarios. For example, 
the default effectiveness of electronic stability control was estimated to be 40 percent for a target 
population of all single-vehicle crashes, but automatic emergency braking could be set to 
different levels of effectiveness in crashes with the lead vehicle moving slower, braking, or 
stopped. Citations are provided for default effectiveness estimates.  
 
In Autoliv’s NASS CDS study, 15 crash avoidance technologies were applied to the model. 
Optimistic and conservative rulesets were determined by the authors, using data on applicable 
speed ranges for each countermeasure from Euro NCAP assessment procedures, Euro NCAP test 
results, driver manuals and web pages. The optimistic and conservative rulesets were compared 
to effectiveness estimates from the literature for each countermeasure. In Autoliv’s GIDAS 
study, additional countermeasures in the model included frontal and side air bags as well as seat-
belt reminders. 
 
The Autoliv GIDAS study model and the VRTC projection model are the only ones that 
currently include specific crashworthiness countermeasures. No crashworthiness 
countermeasures are included in the current interactive UMTRI model. In the Strandroth model, 
a single composite crashworthiness countermeasure was estimated to have a risk-reducing factor 
of 0.01/year to 2020. In the Toyota/Virginia Tech/Wake Forest model, improvements in passive 
safety are incorporated by using injury risk curves that correspond to vehicles with best-
performing passive restraints based on data from the NCAP 5-star and IIHS TSP programs 
(Bareiss et al., 2018).  
 
In the UMTRI study, results can be viewed as counts of annual injuries or occupants with 
injuries disaggregated by variables such as crash type, vehicle type, and occupant age or sex. 
Strandroth et al. reported their results as the predicted number of occupants at given levels of 
RPMI, by road user type (passenger cars, pedestrians, bicyclists, powered 2-wheelers, heavy-
goods vehicles, buses, and other). Passenger car occupants were further broken down by crash 
type (intersection, head-on, single-vehicle, rear-end, wildlife, and other) and bicyclists were 
broken down by crash partner (motor vehicles, pedestrians, other bicycles, mopeds, and single-
vehicle crashes). The Autoliv model presented results in terms of the percentage of residual 
crashes that are expected to fall in each crash type or category. The Toyota/Virginia Tech/Wake 
Forest results can be reported by crash scenario in terms of the numbers of crashes prevented or 
the number of front seat occupants with AIS 2+F injuries. Results can also be analyzed using 
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varying assumptions regarding sensor response and penetration into the fleet. The VRTC 
projection model has significant flexibility for output analysis since the original retrospective 
case parameters that are unchanged by countermeasures are retained with the projected case. 
Therefore, results can be analyzed by categories including pre-crash scenario, roadway type and 
surface condition, lighting, impact direction, vehicle type, and occupant age, seat position, or 
restraint use. The granularity of the results is limited only by the number of case occupants in 
each of these sub-groups. Given the similar case-by-case methodology used in the Strandroth and 
Autoliv models, the output for these models have similar potential flexibility although the 
Standroth model was limited by use of a relatively small set of input cases. 
 
Strandroth’s predictions are for the crash years 2020 and 2030. The UMTRI and Autoliv models 
are not associated with a specific crash year. In both, default penetration rates are set to 100 
percent, but in UMTRI’s interactive version, penetration can be adjusted by the user. The 
Toyota/Virginia Tech/Wake Forest model predicts 2025 and 2040 outcomes, under realistic 
predictions of penetration as well as with an assumption of 100 percent deployment of integrated 
safety systems. The VRTC projection model is designed to output projections to 2020, 2025, and 
2030. 
 
In terms of trends, Strandroth adjusts future crash rates based on a projected increase in traffic 
volume. The UMTRI model allows user adjustments of restraint use. The Toyota/Virginia 
Tech/Wake Forest model applies an optional VMT increase of 1.01 percent per year. The VRTC 
projection model accounts for forecasted population growth by age group, shifts in passenger 
vehicle types, licensing rate trends, economic trends, and increasing restraint use.  
 
Among the previous modeling studies, the Strandroth and Autoliv studies present ranges for 
results. In Strandroth’s work, best- and worst-case sensitivity analyses were based on 
implementation of all interventions five years earlier than estimated and 50 percent more 
effective than predicted, and implementation of all interventions delayed five years and 50 
percent less effective than predicted. The Autoliv studies report results for their conservative and 
optimistic rulesets. Versions of the VRTC projection to be included in the upcoming results 
report include variations run with hypothetical ranges of input parameters for select 
countermeasures and trends, but no systematic procedures for sensitivity analysis have been 
developed. 
 
The main strength of the detailed case-by-case approach taken for the VRTC projection model is 
the capability to disaggregate future crashes by a variety of parameters to help to identify the 
specific safety issues that will remain in the future. Each case is individually compared to the 
target population for each countermeasure, and countermeasures expected to reduce or prevent 
injuries are applied selectively to the injuries in each case, using the expected effectiveness that 
applies to each target population. As a result, the output of the model can be broken down into 
categories that will offer insight not just into the overall pre-crash scenarios or impact directions 
that are expected to be high-risk in the future but the specific crash types and populations that 
deserve attention. The disadvantage of this more complex approach, compared to models that 
adjust injury risk more broadly across whole target populations or on an occupant-level rather 
than at an injury level, is that more detailed information is needed for each countermeasure and 
for each retrospective case.  
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Additional strengths of the VRTC projection model include: 
 

• The incorporation of population and transportation trends,  
• The capability to analyze diverse countermeasures (including those targeted at 

crashworthiness, crash avoidance and mitigation, occupant behavior, or infrastructure) in 
combination on a single set of real-world cases without double-counting countermeasure 
effects, and 

• Use of a large set of input cases, which makes it possible to analyze results by crash, 
occupant, or injury characteristics.  

4.2 Model Limitations 
Uncertainty is inherent to a model projecting into the future. The projection model described in 
this report, based on a survey-sampled retrospective dataset with a high level of uncertainty, is 
also subject to the compounded uncertainty of each included trend and countermeasure. 
Furthermore, even assumptions made with the best available data may lead to inaccurate 
projections if new technologies or transportation trends have the potential to drastically change 
crash outcomes. However, while the absolute magnitude of the projected crash and injury 
parameters should certainly be interpreted as approximate estimates, they can be expected to 
represent the best available estimates if the input data is drawn from the best available 
information on the modeled trends and countermeasures. The resulting projections from such a 
model, based on the combined forecasts of future transportation and population trends as well as 
on estimates of the effectiveness of current and future safety countermeasures, have the potential 
to offer a more comprehensive picture of future crashes than can be obtained using retrospective 
data alone, by accounting for the factors that can change crash outcomes over time. 
 
As currently designed, 95 percent confidence intervals can be estimated for most retrospective 
data in the model output but not for future projections in the model. For projected data, the 
complexity of adjustments made to the data prevents reasonable estimation of confidence 
intervals that reflect the compounded layers of uncertainty in every calculation. Similarly, 
confidence intervals could not be estimated for results involving complex calculations, such as 
attributable fatality or equivalent lives lost, even for the retrospective datasets. Future plans for 
evaluating model certainty include use of sensitivity analyses (refer to Section 4.3). 
 
As in any analysis of crash data, the detail or granularity of the results is limited by the size of 
the source datasets. Calculation of mean case weights in potential analysis categories (in Section 
2.8) showed that disaggregation of the data by multiple variables is likely reasonable for most 
analysis categories considered. Exceptions included certain analyses disaggregated by vehicle 
type, which should be done with caution.  
 
Current projections are based on crash data from 2004 to 2015 because 2015 was the last year for 
which NASS CDS and GES datasets were available. The model is not currently structured to use 
more recent CISS and CRSS cases. If the model could be redesigned to base projections based 
on retrospective data CISS and CRSS, or to pool data from CDS/GES and from CISS/CRSS, 
projections could be based on more recent real-world data and could be updated annually. Use of 
the enhanced CISS variables associated with pre-crash scenarios and crash avoidance 
technologies may also improve the definitions of target population and penetration in the model.  
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The current version of the model includes only passenger vehicle occupants, because the 
foundational NASS CDS dataset excludes pedestrians, bicyclists, and motorcyclists. Similarly, 
no heavy-truck crashes are included in the model since these are also excluded from NASS CDS. 
Future inclusion of these other road users in the current projection model, based on 2004 to 2015 
NASS CDS retrospective cases, will necessitate use of additional datasets as discussed in Section 
4.3.  
 
In addition to the measures of harm that the model can currently output, early versions of the 
model quantified harm in terms of disability and attributable disability, using the Functional 
Capacity Index (FCI). Preliminary results, however, have shown that the methods used were 
ineffective in capturing the effects of injuries associated with whiplash associated disorder or 
mild traumatic brain injury. Therefore, no disability results are currently output by the model. 
Plans for the addition of a disability harm measure are summarized in Section 4.3. In the absence 
of a harm measure reflecting disability, low-AIS injuries such as soft-tissue neck injuries or mild 
traumatic head injury are not captured by the model output. Therefore, many countermeasures 
are not coded in the current model to affect AIS 1 injuries, even if the countermeasure was 
expected to address them. Incorporation of a disability harm measure is being explored. Once 
model results can be analyzed relative to AIS 1 injuries, countermeasures that could potentially 
address these lower-AIS injuries will need to be revised accordingly. 
 
As discussed in Section 2.3, reweighting of the retrospective datasets using KABCO-AIS 
methods to account for exclusion of cases missing AIS codes has the potential to lead to 
overestimation of the frequency of the most severe and least severe cases in the reweighted 
dataset since the injury severity distribution was expected to be different among cases that are 
coded with AIS and cases without AIS codes. Even among cases with the same KABCO score, 
severity may vary for cases with or without AIS codes. However, the error introduced with this 
reweighting step was less than the resulting error that would be expected if no adjustment were 
made to account for exclusion of cases without AIS codes. Furthermore, reweighting of the 
stepping-stone datasets (Section 2.4) used to develop future projections was performed using the 
same methods, so that any bias introduced into the projections was also present in the 
retrospective dataset used for comparison. 
 
Analysis of initial model results has illustrated a potential issue with the use of the initial case 
reweighting scheme outlined in Section 2.3.1. By reweighting by occupant, rather than by crash, 
there was a potential for unexpected results, e.g., unequal increases in the number of striking 
vehicles and struck vehicles in certain impact configurations. Potential future improvements 
include reweighting by crash, rather than by occupant, for selected reweighting variables. 
 
Crash avoidance countermeasures in the projection model primarily focus on 2-vehicle crashes 
because use of the accident type variable categorizes crash interactions between two vehicles. 
Categorization of multi-vehicle crashes was problematic and sometimes less accurate. Improved 
algorithms for addressing individual crashes within multiple-vehicle crashes would help to better 
identify crashes associated with specific crash avoidance countermeasures.  
 
In the current version of the model, vehicle type trends are applied after the stepping-stone 
datasets have been reweighted to match GES/FARS proportions of occupants by seat position, 
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age, restraint use and injury severity. That sequence means that the upweighting or 
downweighting of cases to reflect shifting vehicle types also has the potential to shift other 
proportions in the dataset. For example, if more younger adults drive SUVs in the dataset, then 
upweighting of SUVs in the future could increase the proportion of young adults among drivers 
in the future dataset. Similarly, restraint use trends were applied after initial reweighting by seat 
position, age, restraint use, injury severity, and vehicle type. This sequence has the potential to 
lead to unintended shifts in the proportion of these variables in the dataset. For example, 
downweighting of cases involving unrestrained occupants would have the potential to lead to a 
decrease in the number of crashes involving pickup trucks, since belt use rates are typically 
lower in pickups than in other vehicles. Among these unintended consequences of the sequential 
application of trends, the worst potential effects were identified as the potential shifts in age 
distribution and vehicle type that resulted from reweighting by restraint use. As a result, the 
application of the belt use trend was designed to minimize this potential error. In the front seat, 
reweighting of cases by belt use was done by vehicle type because front seat belt use rates varied 
substantially by vehicle type. In the rear seat, reweighting by belt use was done by age group, 
since belt use varied more by age than by vehicle type for this group of occupants. This 
disaggregation, and its role in reducing the potential unintended inflation of certain crash and 
occupant characteristics, is discussed in more detail in Section 2.5.4. However, while this 
strategy minimized the effects of the sequential application of trends, development of more 
comprehensive methods to apply competing trends to the projections should be considered in the 
future. 
 
Occupants in older and newer vehicles can differ substantially with respect to demographics and 
behavior. The reweighting scheme used in the projection model does not fully account for these 
differences in that the 2004 to 2015 source cases used in the stepping-stone datasets are biased 
toward newer vehicles. Vehicles older than model year 2005 were included in the model but 
were not adjusted for vehicle-based countermeasures and were simply downweighted in the 
future datasets to represent the shrinking number of MY<2005 vehicles still expected to be on 
the road in the future. The lack of injury data in later years of NASS CDS for occupants in 
vehicles older than 9 years-old further reduced the older-vehicle cases in the dataset, even in the 
MY2005+ subset. As a result of these issues, the types of occupants most frequently associated 
with older vehicles are likely under-represented in the projection datasets. In the 2020 projection, 
the cases involving MY 2005 to 2015 vehicles (which were 0-10 years old at the time of the 
crash) were used to represent crashes in 0- to 15-year-old vehicles. By the 2030 projection, these 
same cases were used to represent crashes in 0- to 25-year-old vehicles. This limitation may have 
a major influence on results and is a priority for future model refinements. Methods for 
improving the representation of occupant and crash characteristics typical of older-vehicle 
crashes are being explored for future versions of the model. 
 
Trends related to driver distraction since the 2004 to 2015 retrospective cases are not captured in 
the model. Analysis of the cases in the retrospective dataset showed that only 13.2 percent of 
occupants were coded as being in crashes associated with driver distraction, with only 1.8 
percent specifically attributed to distraction by in-vehicle controls, phones, or other devices and 
objects. More often, distraction was associated with a person, object or event outside the vehicle 
(2.7%), sleeping or dozing (2.4%), or other occupants in the vehicle (2.4%). Distraction status 
was coded as unknown in 22 percent of cases. These estimates may underestimate the actual role 
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of distraction in crashes from 2004 to 2015. Furthermore, no adjustment has been made to 
account for the possible increase in driver distraction over the 2004 to 2015 retrospective period, 
between 2015 and the present, or any possible increase in the future. A hypothetical 
countermeasure for exploring the effects of reducing distraction associated with in-vehicle 
controls and accessories or with hand-held devices has been developed (Mallory et al., in press), 
but its usefulness is limited by the possible underestimates of distraction in both the source cases 
and in the future projections. In order to more accurately account for the outcome of driver 
distraction in future crashes, additional data on distraction frequency and outcome among past, 
current, and future road-users are needed. 
 
Similarly, insufficient information was available to model trends in drug use in the future. In 
order to model the effects of shifting patterns in drug use and of changes in laws governing the 
use of drugs such as marijuana, more information would be needed on the prevalence of drug use 
among drivers in the retrospective dataset, the expected effect of these drugs on crash risk, and 
the expected future prevalence of drug use among drivers. 

4.3 Future Model Enhancements and Applications 
The model output is reliant on hundreds of parameters to adjust cases in the retrospective dataset 
to represent future cases. While efforts were made to find the most reliable information available 
to define all these required parameters, the model and its countermeasures can be updated as any 
new and better source information becomes available. Potential updates include revisions to 
parameter estimates with revised values from updated research or to parameter estimates that 
have been coded with temporary estimates as a result of missing information, as described in the 
countermeasure summaries in the appendices. In the future, results will always be accompanied 
by detailed summaries of the parameters used for each countermeasure used in the reported 
model since these are expected be updated and refined frequently. 
 
Application of countermeasures often relies on target population variables such as delta V that 
are not available in every case. In the current version of the model, cases with missing values for 
such variables are addressed individually for each countermeasure as defined in the 
corresponding appendices. Future versions of the model could be revised with imputed variables 
for key case parameters that are needed for target populations. 
 
Trends applied by age group in the current version of the model include population growth, as 
well as behavioral trends, such as restraint use and licensure rates. Estimated population growth, 
projected from census data, takes into account the aging of particular cohorts of the population. 
For example, the size of the population in a particular age decade in 2030 is linked to the size of 
the same cohort that was a decade younger in 2020. In contrast, behavioral trends have not 
accounted for the aging of specific cohorts of occupants. For example, restraint use among the 
70+ age group was projected based on restraint use in the 70+ age group in the past. For future 
versions of the model, methods could be explored for using age data on each specific age cohort 
over time for projecting behavior trends. For example, projected restraint use among the 70+ age 
group could rely, in part, on the historical restraint use of that specific group of occupants when 
they were in the 50-59 and 60-69 age groups. 
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Although initial runs of the model have included versions that explore the effect of varying 
individual model, trend, or countermeasure parameters (Mallory et al., in press), or even 
combinations of these parameters, a comprehensive sensitivity analysis has not yet been 
performed. It is proposed that future sensitivity analysis could be systematically conducted using 
ranges of input values in place of the point estimates used in the current projection model. Low 
and high estimates of model parameters for a sensitivity analysis could come from previously 
reported data, such as the confidence intervals provided in the effectiveness studies used to 
develop the model. Where no confidence intervals are available for the input values used as 
parameters in the projection model, systematic ranges could be estimated using methods like 
those used by Strandroth’s group, who bracketed effectiveness estimates with values 50 percent 
higher and 50 percent lower (Strandroth et al., 2016).  
 
Enhancements to the attributable fatality and disability harm measures used to analyze model 
output are planned. The optimized parameters used in the current attributable fatality 
methodology are based on a 2017 update to Martin’s originally derived parameters (Mallory et 
al., 2017). Additional updates to these parameters are planned, with re-grouping of injury types 
and age as a covariate to better estimate fatality risk. Addition of a measure of disability into 
model output is also anticipated. Previous harm calculations based on Functional Capacity Index 
(FCI) were ineffective at estimating disability from low-AIS injuries. Therefore, other disability 
methods, including the revised FCI version incorporated into recent updates of the AIS system 
and the RPMI scale, will be evaluated for use with the model. 
 
Explorations for the addition of vulnerable road users to the current projection model (based on 
2004 to 2015 retrospective cases) includes the use of NASS GES pedestrian, cyclist, and 
motorcyclist cases. Alternatively, vulnerable occupant data could be drawn from CRSS if the 
model were updated in the future to incorporate CRSS and CISS source cases in addition to, or 
instead of, GES and CDS cases. Supplemental data will be needed to estimate how many of these 
cases would be in the target populations for countermeasures such as crash avoidance 
technology, pedestrian-friendly design, dedicated bicyclist lanes, or helmet-use laws. Ideally, the 
supplemental case data would be detailed enough to provide a detailed picture of the sub-types of 
these crashes and the associated injuries that would remain after introduction of these 
countermeasures. The supplemental data could come from the NHTSA’s Pedestrian Crash Data 
Study, the NTDB, or possibly from international datasets such as GIDAS. For example, 
pedestrian, bicyclist, and motorcycle injuries could be drawn from NTDB and weighted by 
parameters such as age group and injury severity to match NASS GES annual numbers of cases. 
For pedestrians, crash conditions such as impact speed and injury source could be imputed from 
data in the Pedestrian Crash Data Study based on injury patterns and case parameters. Similar 
approaches can also be explored for micromobility devices (such as scooters) as information 
comes available. It may also be possible to add heavy vehicles to the analysis using sources such 
as the Trucks Involved in Fatal Accidents and Buses Involved in Fatal Accidents datasets. 
 
A number of countermeasures expected to be effective in preventing or mitigating crashes during 
the period of the source cases in the projection model or expected to be effective in the future, 
were not included in the current version of the model. The rationale for, and potential 
implications of, excluding these countermeasures is discussed along with the potential for future 
inclusion of each one in the model:  
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• Updates to the FMVSS No. 139 tire safety standard: FMVSS No. 139 was updated in 

2002 and in 2003. The Final Regulatory Evaluation for the 2002 update stated that 
NHTSA believed this regulation would lead to increasing public awareness of tire safety 
and tire maintenance, which should result in fewer tire-related crashes (NHTSA, 2002). 
However, the FRE also stated that quantitative estimates of the benefits were difficult to 
establish, in part because it is difficult to predict drivers’ response to changing awareness 
and therefore the ultimate effectiveness of FMVSS No. 139. If information on 
effectiveness could be determined, this countermeasure could easily be combined with 
the FMVSS No. 138 countermeasure already included in the model since it is likely that 
FMVSS No. 139 would apply to the same target population as FMVSS No. 138. The 
FRE for the 2003 update to FMVSS No. 138 indicated that upgrades to performance tests 
were expected to increase the strength, endurance, and heat resistance of tires (NHTSA, 
2003a). Although benefits were estimated based on assumptions of how hard these tests 
might be to pass, the FRE indicated that “good estimates of effectiveness” were not 
available. Due to the lack of available information on effectiveness, the 2002 and 2003 
upgrades to FMVSS No. 139 are currently excluded from the current model. 

• V2V applications: Exploratory versions of the model have included a hypothetical V2V 
(vehicle-to-vehicle communications) countermeasure with the intersection movement 
assist and left turn across path applications (apps). Insufficient data was available to 
model the effects of other potential V2V crash avoidance apps such as forward collision 
warning, blind-spot or lane-change warning, and do-not-pass warnings. The timeline and 
ultimate future penetration of V2V technologies is unclear. Therefore, although the 
hypothetical effects of V2V apps will be explored with the model, these countermeasures 
have not been included in the primary model. 

• V2X: Beyond V2V applications, other V2X applications (such as those associated with 
vehicle-to-infrastructure communication) have not yet been incorporated into the model. 
The primary reason for excluding this family of crash avoidance technologies is the lack 
of information available to quantify effectiveness and expected penetration. As data 
becomes available on the developing technologies based on dedicated short range 
communication and cellular communication, they can be coded into the model. In the 
meantime, the contribution of these V2X countermeasures was captured by the very 
general automated driving system countermeasure, which incorporates the expected 
overall benefit of all safety countermeasures on automated vehicles, including crash 
avoidance features that may be provided by V2X capabilities or by vehicle-resident 
technology. 

• Automatic crash notification: While the current model is focused on the immediate 
outcome of the crash, future versions of the model could incorporate the effects of post-
crash response and care, including advanced automatic crash notification, on the ultimate 
outcome of crash injuries. 

• Hypothetical countermeasures targeting speed reduction: Future versions of the 
model could incorporate hypothetical countermeasure modules to explore the potential 
effects of safety interventions and programs that would reduce travel speeds.  

• Distraction countermeasures such as NHTSA’s Distraction Guidelines, text/talk and 
drive laws, phone-block technology: In the absence of reliable estimates of the 
effectiveness or penetration of individual distraction countermeasures, the model includes 
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a hypothetical distraction reduction countermeasure that can be used to demonstrate the 
effect of a hypothetical magnitude of distraction reduction from any source. Specific 
distraction countermeasures can be incorporated into the model as more information is 
available on countermeasures and as estimates of historical and future levels of 
distraction are made. 

• Belt-use programs and interventions (such as ignition interlocks): It was assumed that 
programs encouraging increased belt-use would continue at the same rate they have in the 
past, so that belt-use conversion rates in the future could be based on past trends in belt-
use improvements. Hypothetical countermeasures to explore the potential effect of 
generic increased efforts or effectiveness of belt-use programs, or the potential effects of 
ignition interlock systems, have been developed for future application to the model. 

• Sobriety checkpoints and other countermeasures for crashes involving impaired 
driving: Although interventions such as sobriety checkpoints and public safety 
messaging campaigns have been proven to be effective in reducing crashes associated 
with impaired driving, future predictions of implementation did not suggest any 
substantial change was expected in the future, compared to the baseline retrospective 
period when the source cases were collected. Therefore, future penetration over the levels 
reported during the era of the source cases would have essentially been zero. A 
hypothetical impaired-driving reduction countermeasure has been developed to explore 
the potential benefit of increasing the implementation of sobriety checkpoints or other 
countermeasures targeted at the reduction of alcohol involved crashes. This hypothetical 
countermeasure will be applied in future exploratory versions of the model. 

• Antilock braking systems: It is assumed that all passenger vehicles with ESC were also 
equipped with anti-lock braking systems. The converse, however, is not true so that some 
of the vehicles in the source CDS cases were equipped with ABS, but not ESC. It was 
decided that it would be redundant to include ABS as a standalone countermeasure in the 
model. ESC estimates of effectiveness were based on post-implementation evaluations of 
real-world data. These estimates compared crashes involving vehicles without ESC to 
crashes involving vehicles with ESC. Among the crashes involving vehicles without 
ESC, some vehicles would have been equipped with ABS and some would not have had 
ABS. Therefore, the estimated effectiveness of ESC reflects the difference in risk 
between a fleet of vehicles without ESC but with a mix of vehicles with/without ABS and 
a fleet of vehicles with ESC and ABS. Therefore, the projection forward to vehicles on 
the road in 2020 to 2030 already accounts for the improvement of no-ABS vehicles to 
vehicles equipped with both ABS and ESC as well as the improvement of ABS-equipped 
vehicles to vehicles equipped with both ABS and ESC. Although the proportion of 
vehicles in the pre-ESC era that are equipped with ABS in the ESC evaluation may not be 
identical to the proportion of pre-ESC vehicles with ABS in the retrospective datasets, 
this approximation was believed to introduce less error than potentially double-counting 
the benefit of ABS by including ABS as an additional countermeasure in the model. 

• Updates to child restraint regulations (FMVSS No. 213 and 225): Previous updates to 
FMVSS No. 213 and 225 either did not have quantifiable safety benefits or had phased in 
prior to 2005. While there have been Notices of Proposed Rulemaking about future 
updates to FMVSS No. 213 and 225, including the addition of a side impact procedure to 
FMVSS No. 213, these updates have not been included in the current version of the 
model due to uncertainty on the phase-in timeline (which informs the fleet penetration 
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used in the model) and the effectiveness (which may vary based on the final test 
procedures).  

• Adaptive cruise control and cooperative adaptive cruise control: The crash avoidance 
effectiveness and penetration of ACC and CACC, which uses V2V technology to 
enhance ACC capabilities, are difficult to estimate accurately. Considering that vehicles 
equipped with this technology also typically have FCW and sometimes AEB, the 
effectiveness of ACC/CACC cannot be isolated and is expected to be low in comparison 
to these other crash avoidance features. Kessler et al. estimated that, even with 100 
percent penetration of ACC in the fleet, injury crashes would only be reduced by about 2 
percent (Kessler et al., 2012). Additionally, future penetration of ACC/CACC is difficult 
to estimate. While estimated future availability of this technology exists, estimates of 
driver use are limited and self-reported. If more accurate effectiveness and penetration 
estimates become available for ACC/CACC, these countermeasures could be added to 
future versions of the projection model. 

• Traffic jam assist: TJA is similar to ACC, but specifically designed for lower speeds. 
This technology is found in vehicles that also have ACC, FCW, and AEB. Since all these 
technologies work cooperatively together, it is difficult to parse out the effectiveness of 
TJA alone. Additionally, the primary functions of TJA are to ease the mental workload of 
the driver and provide enough space between vehicles to allow FCW and AEB to be fully 
effective at avoiding a crash (Brookhuis et al., 2009). TJA was excluded due to potential 
duplication of FCW and AEB, as well as unknown effectiveness.  

• Automatic emergency steering: While AEB assists with longitudinal control of the car 
and only monitors the object directly ahead, AES provides lateral control by 
automatically making an evasive maneuver to avoid a crash. Currently, penetration of 
AES is very small as it has only been available since model year 2018 in a limited 
number of luxury vehicles. Future penetration is expected to lag behind other crash 
avoidance technologies because driver response to AES is not well understood (Sieber et 
al., 2015). 

 
Other countermeasures and trends to be considered for future incorporation into the model 
include: IIHS consumer testing, graduated licensing programs, advanced headlights, intersection 
AEB, increased penetration of electric vehicles, and center console air bags. 
 
Additionally, several trends are under consideration for future incorporation into the 
model: 
 

• Telecommuting: With many employers offering telework options, it is expected that a 
reduced number of commuters on the road will result in fewer motor vehicle crashes in 
the future. Global Workplace Analytics estimated that teleworking eliminated 7.8 billion 
vehicle miles traveled in the United States in 2017 (Global Workplace Analytics & 
Flexjobs, 2017). Considering this savings accounts for less than 0.4 percent of vehicle 
miles traveled, the effect of teleworking on vehicle safety is negligible in the projection 
model. If the teleworking trends triggered by the COVID-19 pandemic lead to sustained 
substantial increases, this trend should be added to future versions of the projection 
model. 
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• Ride hailing: The effect of ride hailing apps, like Uber and Lyft, has been excluded from 
the projection model because there are limited studies with conflicting results on the 
safety effect of these services. Some studies indicate that ride hailing decreases crashes 
(Greenwood & Wattal, 2017; Dills & Mulholland, 2018), while others show increases in 
crashes (Barrios et al., 2018) or no association at all (Brazil & Kirk 2016). Although it is 
expected that use of these services increases rear-seat occupancy, no data on this shift in 
seat position frequency has been identified. The effect of ride hailing on crash frequency 
and seat position could be included in future versions of the projection model if data on 
the widespread effects come available. 

• Alternative seating associated with automated driving systems: The effect of 
alternative seating arrangements in ADS-equipped-vehicles is not included in the current 
projection model due to lack of information on the effect or likelihood of adoption of 
different candidate configurations. Studies have focused on comparative modeling 
(Kitagawa et al., 2017; Gayzik et al., 2018; Jin et al., 2018) or out-of-position cases in 
crash databases (Panzer et al., 2017), but none have provided a quantifiable change in 
injury risk that could be applied to cases in the projection dataset. Additionally, no 
reliable estimates are available yet on the percentage of occupants expected to be 
travelling in reclined or rotated seats. The model should be updated with information on 
these trends as research in this area is completed. 

• COVID-19 pandemic: The effects of the COVID-19 pandemic on U.S. road use and 
crash patterns have not yet been incorporated into the model. The effects of the pandemic 
and associated stay-at-home orders and increases in unemployment are expected to have 
substantial effects on the 2020 projections. Longer term effects could also affect 2025 
and 2030 projections. For example, reductions in the number and types of vehicles sold in 
the near-term will affect the age of vehicles and distribution of vehicle types in the fleet, 
which will affect the penetration of recent technology for several years into the future. 
Increased mortality in older populations could potentially affect the distribution of the 
future population growth by age group. Additionally, the temporary increase in remote 
work could lead to long-term changes in commuting habits. Although these pandemic-
related adjustments are expected to have a substantial impact on the projected number of 
2020 crash exposures, as well as on the distribution of impact types, occupants, and 
injuries in those crashes, the likely effect on 2025 to 2030 crash outcomes is less clear. 

 
The projection results for the full model in future reports will be disaggregated by the crash and 
occupant parameters discussed in Section 2.7.2 and analyzed by all the harm measures discussed 
in Section 2.7.1. These results will represent the best estimate of future crash outcomes, given 
the available predictions and estimates applied to each version of the model. Individual model 
versions can also be used to explore the effect of specific variations in applied trends, 
countermeasures, or modeling methods. Potential future model versions could include the 
following: 
 
Application of optional model components: 
 

• Suppression of the default procedures that upweight low-severity cases to account for the 
exclusion of cases in non-towed vehicles in NASS CDS and the under-reporting of low-
severity crashes to police. 
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Addition of hypothetical countermeasures:  
 

• Countermeasures whose effectiveness or penetration is so uncertain that they were not 
added to the primary model (e.g., V2V applications). 

• Countermeasures whose predicted penetration is expected to be negligibly low, to explore 
how substantially higher penetration could affect future outcomes (e.g., roundabouts). 

• Hypothetical updates to regulatory or consumer testing requirements or performance 
targets. 

• Generic countermeasures for the reduction of crashes associated with alcohol or 
distraction to illustrate the benefit of reducing these crashes by any means. 

 
Deletion of individual countermeasures: 
 

• For some individual countermeasures, the effect of the countermeasures can be explored 
by deleting them from the full model. 

 
Variation in predicted trends: 
 

• Parametric variation in applied economic predictions to explore the effects of better-than-
predicted and worse-than-predicted future unemployment rates as an indicator of the 
status of the economy. 

• Variation of predicted future increases in restraint use to explore the effects of faster-
than-predicted and slower-than-predicted improvements in restraint use rates, as well as a 
hypothetical version showing the potential effect of 100 percent restraint use. 

 
Sensitivity to countermeasure parameters: 
 

• Sensitivity of results to effectiveness estimates can be explored with a percentage change 
in effectiveness for countermeasures in the model. 

• Sensitivity of results to target population definition can be explored by broadening the 
target population for specific countermeasures (e.g., expanding the effect of NCAP 2011 
side impact updates to apply to a much broader subset of side impacts than the narrowly 
defined target population used in the primary model). 

• Sensitivity of results to penetration can be explored with versions of specific 
countermeasures under the hypothetical assumptions that penetration would occur twice 
as fast, or half as fast, as anticipated. 
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Appendix A: Vehicles in Crashes by Age 

A.1 Vehicle Age Distribution 
The estimated distribution of vehicle age in crash exposures is needed in multiple components in 
the projection model. This distribution corresponds to the proportion of occupants exposed to 
potential crashes by the age of their vehicles at the time of the crash. Distribution of vehicle age 
in past and projected datasets was estimated using historical data from NASS GES (years 2006 
to 2008) in Table 33 and Figure 24. This period was selected because it was more stable than in 
subsequent years. Vehicle sales in 2009 and later were affected by the economic downturn in the 
U.S., resulting in an initial reduction in sales followed by a rebound, affecting the vehicle-age 
distribution of occupants in crashes for many subsequent years. 

Table 33. Vehicle age distribution 

Vehicle Age at 
Time of Crash 

Percentage of Weighted Occupants in 
CDS-Eligible Cases in 
NASS GES 2006-2008 

0 5.517757 
1 7.029345 
2 6.982753 
3 7.145462 
4 7.265463 
5 7.351633 
6 7.425612 
7 7.147121 
8 6.826811 
9 6.225404 

10 5.431873 
11 4.930905 
12 4.437301 
13 3.656767 
14 2.901561 
15 2.228664 
16 1.833639 
17 1.345905 
18 1.130853 
19 0.77777 
20 0.608425 
21 0.415741 
22 0.321019 
23 0.214166 
24 0.157311 
25 0.091023 
26 0.063099 
27 0.070086 
28 0.066268 
29 0.07535 

30+ 0.324912 
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Figure 24. Vehicle age distribution (NASS GES 2006–2008) 

A.2 Vehicle Model Year Distribution  
Since the MY<2005 vehicles in the stepping-stone dataset continue to represent MY<2005 
vehicles in the projection datasets, cases involving occupants in MY<2005 vehicles are not 
adjusted in the model for vehicle trends such as shifting proportions of vehicle types or vehicle-
based countermeasures introduced after model year 2005. Application of vehicle trends and 
vehicle countermeasures to MY2005+ vehicles in the projection model therefore requires 
estimation of the vehicle model year distribution among only MY2005+ vehicles. This 
distribution is needed for the 2013 to 2015 crash-year period in the stepping-stone dataset as well 
as for the 2020, 2025, and 2030 projection years. For the 2030 projection, for example, the 
vehicle age distribution among occupants in MY2005+ vehicles provides the estimated 
percentage of cases in vehicles of each model year among only case occupants in vehicles 25 
years or newer. The resulting vehicle model year distributions for each time period of interest are 
shown in Table 34 through Table 39, based on the data in Appendix A.1. 
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Table 34. Vehicle age distribution for the crash year 2013 

Model 
Year 

Percentage of Weighted 
Occupants (from Appendix A.1) 

Percentage of Weighted 
Occupants Among Occupants in 

MY2005+ Vehicles 
2013 5.52% 8.80% 
2012 7.03% 11.21% 
2011 6.98% 11.14% 
2010 7.15% 11.40% 
2009 7.27% 11.59% 
2008 7.35% 11.73% 
2007 7.43% 11.84% 
2006 7.15% 11.40% 
2005 6.83% 10.89% 
Total 62.69% 100.0% 

 

Table 35. Vehicle age distribution for the crash year 2014  

Model 
Year 

Percentage of Weighted 
Occupants (from Appendix A.1) 

Percentage of Weighted 
Occupants Among Occupants in 

MY2005+ Vehicles 
2014 5.52% 8.01% 
2013 7.03% 10.20% 
2012 6.98% 10.13% 
2011 7.15% 10.37% 
2010 7.27% 10.54% 
2009 7.35% 10.67% 
2008 7.43% 10.77% 
2007 7.15% 10.37% 
2006 6.83% 9.91% 
2005 6.23% 9.03% 
Total 68.92% 100.0% 
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Table 36. Vehicle age distribution for the crash year 2015  

Model 
Year 

Percentage of Weighted 
Occupants (from Appendix A.1) 

Percentage of Weighted 
Occupants Among Occupants in 

MY2005+ Vehicles 
2015 5.52% 7.42% 
2014 7.03% 9.45% 
2013 6.98% 9.39% 
2012 7.15% 9.61% 
2011 7.27% 9.77% 
2010 7.35% 9.89% 
2009 7.43% 9.99% 
2008 7.15% 9.61% 
2007 6.83% 9.18% 
2006 6.23% 8.37% 
2005 5.43% 7.31% 
Total 74.35% 100.0% 

 

Table 37. Vehicle age distribution for the crash year 2020  

Model 
Year 

Percentage of Weighted 
Occupants (from Appendix A.1) 

Percentage of Weighted 
Occupants Among Occupants in 

MY2005+ Vehicles 
2020 5.52% 5.96% 
2019 7.03% 7.60% 
2018 6.98% 7.55% 
2017 7.15% 7.72% 
2016 7.27% 7.85% 
2015 7.35% 7.95% 
2014 7.43% 8.03% 
2013 7.15% 7.73% 
2012 6.83% 7.38% 
2011 6.23% 6.73% 
2010 5.43% 5.87% 
2009 4.93% 5.33% 
2008 4.44% 4.80% 
2007 3.66% 3.95% 
2006 2.90% 3.14% 
2005 2.23% 2.41% 
Total 92.50% 100.0% 
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Table 38. Vehicle age distribution for the crash year 2025 

Model 
Year 

Percentage of Weighted 
Occupants (from Appendix A.1) 

Percentage of Weighted 
Occupants Among Occupants in 

MY2005+ Vehicles 
2025 5.52% 5.62% 
2024 7.03% 7.16% 
2023 6.98% 7.11% 
2022 7.15% 7.28% 
2021 7.27% 7.40% 
2020 7.35% 7.49% 
2019 7.43% 7.56% 
2018 7.15% 7.28% 
2017 6.83% 6.95% 
2016 6.23% 6.34% 
2015 5.43% 5.53% 
2014 4.93% 5.02% 
2013 4.44% 4.52% 
2012 3.66% 3.72% 
2011 2.90% 2.95% 
2010 2.23% 2.27% 
2009 1.83% 1.87% 
2008 1.35% 1.37% 
2007 1.13% 1.15% 
2006 0.78% 0.79% 
2005 0.61% 0.62% 
Total 98.20% 100.0% 
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Table 39. Vehicle age distribution for the crash year 2030 

Model 
Year 

Percentage of Weighted 
Occupants (from Appendix A.1) 

Percentage of Weighted 
Occupants Among Occupants in 

MY2005+ Vehicles 
2030 5.52% 5.55% 
2029 7.03% 7.07% 
2028 6.98% 7.02% 
2027 7.15% 7.19% 
2026 7.27% 7.31% 
2025 7.35% 7.40% 
2024 7.43% 7.47% 
2023 7.15% 7.19% 
2022 6.83% 6.87% 
2021 6.23% 6.26% 
2020 5.43% 5.46% 
2019 4.93% 4.96% 
2018 4.44% 4.46% 
2017 3.66% 3.68% 
2016 2.90% 2.92% 
2015 2.23% 2.24% 
2014 1.83% 1.84% 
2013 1.35% 1.35% 
2012 1.13% 1.14% 
2011 0.78% 0.78% 
2010 0.61% 0.61% 
2009 0.42% 0.42% 
2008 0.32% 0.32% 
2007 0.21% 0.22% 
2006 0.16% 0.16% 
2005 0.09% 0.09% 
Total 99.40% 100.00% 
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Appendix B: Projected Trends 

B.1 Vehicle Type Trend Application 
As discussed in Section 2.5.1, the proportion of each vehicle type expected to be exposed to 
potential crashes in the future was adjusted according to predicted shifts in the on-road vehicle 
type distribution. This adjustment was made by reweighting the cases in the stepping-stone 
dataset so that the distribution of cases by vehicle type matched the predicted distribution of 
vehicles exposed to crashes in the target projection year. The estimated distribution of vehicle 
types in future crash exposures was primarily based on: 
 

• historical year-by-year sales data from the Environmental Protection Agency (EPA, 2015, 
2019) adjusted for SUV sales data from NHTSA (Puckett & Kindelberger, 2016),  

• predicted sales data in future years from the Energy Information Administration 2018 
Annual Energy Outlook (EIA, 2017, 2018), and 

• estimated vehicle age distribution in future crashes. 
 

This appendix includes supplemental information used to distinguish CUVs from other SUVs 
(B.1.1) as well as the source data used to estimate the proportion of different vehicle types sold 
in the past (B.1.2) and expected in the future (B.1.3). The resulting projected distribution of 
different vehicle types in the projection model is summarized in Appendix B.1.4. 

B.1.1 Classification of CUVs 
The vehicles in Table 40 were classified as CUVs in the projection model.20  

Table 40. CUVs by make, model, and model year 

Make Model Model Year 
Acura MDX 2001:2016 
Acura RDX 2007:2016 
Acura ZDX 2010:2013 
Audi Allroad 2001:2005, 2013:2016 
Audi Q5 2009:2016 
Audi Q7 2007:2015 
BMW X1 2013:2016 
BMW X3 2004:2016 
BMW X5 2000:2016 
BMW X6 2008:2016 
Buick Enclave 2008:2016 
Buick Encore 4-door CUV 2013:2016 
Buick Rendezvous 2002:2007 
Cadillac SRX 2004:2016 
Chevrolet Captiva 2011:2015 
Chevrolet Equinox 2005:2016 

                                                 
20 Charles J. Kahane, Bowhead Logistics Solutions, LLC, Alexandria, VA, personal communication, 2018. 
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Make Model Model Year 
Chevrolet HHR 2006:2011 
Chevrolet Traverse 2009:2016 
Chrysler Pacifica 2004:2008 
Chrysler PT Cruiser 2001:2010 
Dodge Journey 2009:2016 
Dodge Magnum 2005:2008 
Ford Edge 2007:2016 
Ford Escape 2013:2016 
Ford Escape 4dr 2001:2012 
Ford Flex 2009:2016 
Ford Freestyle 2005:2007 
Ford Taurus X 2008:2009 
GMC Acadia 2007:2016 
GMC Terrain 2010:2016 
Honda Accord Crosstour 2010:2015 
Honda CR-V 1997:2016 
Honda Element 2003:2011 
Honda Pilot 2003:2016 
Hyundai Santa Fe 2002:2014 
Hyundai Santa Fe Sport 2013:2016 
Hyundai Tucson 2005:2016 
Hyundai Veracruz 2007:2012 
Hyundai Veracruz 4x4 2007:2012 
Infiniti EX35 2008:2012 
Infiniti FX35/FX45 4dr 2003:2008 
Infiniti QX50 2014:2016 
Infiniti QX60 4dr 2014:2016 
Infiniti QX70 2014:2015 
Jeep Compass/Patriot 2007:2016 
Kia Sorento 2011:2016 
Kia Sportage 4dr 2005:2016 
Kia Sportage 4dr 4x4 2005:2010 
Land Rover Discovery Sport 4dr 2015:2016 
Land Rover LR2 4dr 4x4 2008:2015 
Land Rover Range Rover Evoque 2dr 4x4 2012:2016 
Land Rover Range Rover Evoque 4dr 4x4 2012:2016 
Land Rover Range Rover LWB 4x4 2014:2016 
Lexus NX 2015:2016 
Lexus RX300 4dr 1999:2003 
Lexus RX330/RX350 4dr 2004:2009 
Lexus RX350/RX450h 2016 
Lexus RX350/RX450h 4dr 2010:2015 
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Make Model Model Year 
Lincoln MKC 2015:2016 
Lincoln MKT 2010:2016 
Lincoln MKX 2007:2016 
Mazda 5 2012:2015 
Mazda CX-5 2013:2016 
Mazda CX-7 2007:2012 
Mazda CX-9 2007:2016 
Mazda Tribute 2001:2011 
Mazda Tribute 4x4 2001:2011 
Mercedes Benz GL-320/450 2007:2012 
Mercedes Benz GL-350/550 2013:2016 
Mercedes Benz GLK-350 2010:2015 
Mercedes Benz R 350 4dr 2008 
Mercedes Benz R 350/500 4dr. 2006:2012 
Mercury Mariner 2005:2011 
Mercury Mariner 4x4 2005:2011 
Mitsubishi Endeavor 2004:2008, 2010:2011 
Mitsubishi Outlander 2003:2016 
Nissan Cube 2009:2014 
Nissan Juke 2011:2016 
Nissan Murano 2CV 2011:2014 
Nissan Murano 4dr 2003:2016 
Nissan Pathfinder 4dr 2013:2016 
Nissan Rogue 2008:2016 
Pontiac Aztek 2001:2005 
Pontiac Torrent 2006:2009 
Porsche Cayenne 2003:2006, 2008:2016 
Porsche Macan 2015:2016 
Saturn Outlook 2007:2010 
Saturn Vue 2002:2010 
Subaru B9 Tribeca 2006:2014 
Subaru Crosstrek 2013:2016 
Subaru Forester 1998:2016 
Subaru Outback 2005:2016 
Suzuki Grand Vitara XL-7 4x4 2001:2006 
Suzuki XL-7 2007:2009 
Toyota Highlander 2001:2016 
Toyota RAV4 2013:2014 
Toyota RAV4 2dr 4x2 1996:1999 
Toyota RAV4 2dr 4x4 1996:1999 
Toyota RAV4 4dr 2006:2016 
Toyota RAV4 4dr 4x2 1996:2012 
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Make Model Model Year 
Toyota RAV4 4dr 4x4 1996:2005 
Toyota Venza 2009:2015 
Volvo XC60 2010:2016 
Volvo XC70 2001:2016 
Volvo XC90 2003:2014, 2016 
VW Tiguan 2009:2016 
VW Touareg 2004:2016 

B.1.2 Source Data: Historical Vehicle Sales (2005–2016)  
Light-duty vehicle sales numbers by vehicle type were available from the EPA for years 1975 to 
2016, while light-duty vehicle sales proportions by vehicle type were available from NHTSA for 
2003 to 2010. Because the vehicle type trend is only applied to vehicles of MY2005+, only 
vehicle sales for 2005 and later are shown in this section.  
 
The number and types of light-duty vehicles sold in the United States from 2005 to 2016, based 
on EPA sales data, are shown in Table 41 (EPA, 2019). Table 42 shows the corresponding sales 
proportions by vehicle type for this data. The proportion of light-duty vehicle sales by vehicle 
type based on NHTSA data (Puckett & Kindelberger, 2016) is shown in Table 43.  

Table 41. EPA-reported new light-duty vehicles sold in U.S. by vehicle type (EPA, 2019) 

New Light-Duty Vehicles Sold in U.S. (Thousands) 
Model 
Year Car CUVs Truck-

SUVs Vans Pickups Total 

2005 8,026.53 812.83 3,271.67 1,480.85 2,300.39 15,892.26 
2006 7,993.01 751.49 3,005.87 1,166.05 2,188.07 15,104.49 
2007 8,081.83 919.19 3,314.39 847.23 2,113.17 15,275.82 
2008 7,318.68 923.84 3,072.07 789.89 1,793.88 13,898.36 
2009 5,636.22 608.22 1,713.85 368.07 989.48 9,315.85 
2010 6,060.64 914.92 2,305.41 559.14 1,276.30 11,116.40 
2011 5,742.73 1,206.61 3,069.22 520.97 1,478.87 12,018.40 
2012 7,393.34 1,265.33 2,771.39 662.28 1,356.55 13,448.89 
2013 8,225.89 1,514.03 3,309.62 571.07 1,576.98 15,197.59 
2014 7,638.74 1,566.36 3,706.17 671.61 1,928.87 15,511.75 
2015 7,899.49 1,701.27 4,696.85 654.91 1,785.99 16,738.52 
2016 7,130.05 1,870.09 4,729.87 629.95 1,906.71 16,266.67 
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Table 42. Proportion of light-duty vehicles sold in U.S. by vehicle type  
(calculated from Table 41)  

New Light-Duty Vehicles Sold in U.S. (% of total light-duty vehicle sales) 
Model 
Year Car CUVs Truck-

SUVs Vans Pickups 

2005 50.51% 5.11% 20.59% 9.32% 14.47% 
2006 52.92% 4.98% 19.90% 7.72% 14.49% 
2007 52.91% 6.02% 21.70% 5.55% 13.83% 
2008 52.66% 6.65% 22.10% 5.68% 12.91% 
2009 60.50% 6.53% 18.40% 3.95% 10.62% 
2010 54.52% 8.23% 20.74% 5.03% 11.48% 
2011 47.78% 10.04% 25.54% 4.33% 12.31% 
2012 54.97% 9.41% 20.61% 4.92% 10.09% 
2013 54.13% 9.96% 21.78% 3.76% 10.38% 
2014 49.24% 10.10% 23.89% 4.33% 12.43% 
2015 47.19% 10.16% 28.06% 3.91% 10.67% 
2016 43.83% 11.50% 29.08% 3.87% 11.72% 

 

Table 43. NHTSA-reported proportion of light-duty vehicles sold in U.S. by vehicle type 

New Light-Duty Vehicles Sold in U.S. (% of total light-duty vehicle sales) 
Model 
Year Car CUVs Truck-

SUVs Vans Pickups 

2005 47.83% 13.41% 13.88% 8.99% 15.89% 
2006 48.91% 14.01% 11.97% 8.11% 17.00% 
2007 51.30% 15.73% 13.17% 5.79% 14.01% 
2008 51.09% 17.17% 11.29% 5.95% 14.50% 
2009 59.68% 14.83% 10.02% 4.32% 11.14% 
2010 54.20% 15.22% 12.99% 5.50% 12.08% 

 
Because the sales mix was relatively consistent between the EPA data in Table 42 and the 
NHTSA data in Table 43 for all categories except CUVs and truck-based SUVs, it was assumed 
that the two datasets used compatible definitions of passenger cars, pickup trucks, and vans, but 
that the definition of CUVs and truck-based SUVs likely varied between the two. In other words, 
it was likely that NHTSA used a broader definition of CUVs, given that from year-to-year, the 
percentage of CUVs was substantially higher than in the EPA dataset. Because the projection 
model uses a system for distinguishing CUVs and truck-based SUVs that is expected to be 
consistent with the definition used by NHTSA (for more detail on the system used for 
distinguishing SUV types, see Section 2.5.1), an adjustment was applied to the EPA data for all 
years for which both EPA data and NHTSA data was available. As shown in Table 44, it was 
estimated that, on average, 40.59 percent of vehicles categorized as truck-SUVs in the EPA data 
would have been categorized as CUVs by NHTSA. Therefore, the truck-SUV sales in the EPA 
data were reduced by 40.59 percent and the corresponding sales were added to the CUV sales for 
each year from 2005 to 2010.  
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Table 44. Truck-SUV adjustment calculation (2005–2010) 

 
TStotal, EPA 

Truck-SUV Sales 
(Thousands) 

LVtotal, EPA 

Total Light-Duty 
Vehicle Sales 
(Thousands) 

TSpercent, NHTSA 

Truck-SUVs (% 
of Total Vehicle 

Sales) 

Conversion 
% of Truck-SUV 
Sales to Convert 

to CUV Sales 

Source EPA EPA NHTSA Calculation 
(Equation (27)) 

2005 3,271.67 15,892.26 13.88% 32.58% 
2006 3,005.87 15,104.49 11.97% 39.85% 
2007 3,314.39 15,275.82 13.17% 39.30% 
2008 3,072.07 13,898.36 11.29% 48.92% 
2009 1,713.85 9,315.85 10.02% 45.54% 
2010 2,305.41 11,116.40 12.99% 37.36% 

Average 40.59% 
 
 𝐶𝐶𝑃𝑃𝑃𝑃𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑊𝑊𝑃𝑃𝑃𝑃 =  

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃𝑓𝑓,𝐸𝐸𝑃𝑃𝑅𝑅 −  (𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃𝑓𝑓,𝐸𝐸𝑃𝑃𝑅𝑅 𝑥𝑥 𝑇𝑇𝑇𝑇𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝑠𝑠𝑟𝑟,𝑁𝑁𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅)
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃𝑓𝑓,𝐸𝐸𝑃𝑃𝑅𝑅

 (27) 

 where parameters are defined in Table 44.  
 
Based on this conversion, the vehicle sales proportions used in the projection model for 2005 to 
2010 (Table 45) were from EPA estimates, adjusted as shown above to match the NHTSA 
definition of CUVs and truck-based SUVs. For 2011 to 2016, in the absence of other available 
data, it was estimated that any increase in the proportion of light truck sales in the EPA estimates 
was due to SUVs that were categorized as truck-SUVs by the EPA, but that would have been 
categorized as CUVs by NHTSA. This approximation was based on the observation that most 
growth in SUV sales during this period came from the small SUV market segment. Therefore, to 
adjust the EPA estimates to correspond to NHTSA’s definitions of CUVs and truck-based SUVs, 
the number of truck-SUVs in 2011 to 2016 was reduced to hold the total percentage of light 
truck sales (Truck-SUVs + Vans + Pickups) constant at 2010 levels (28.8% of total vehicles 
according to Table 45). The number of vehicles subtracted from truck-SUVs to hold the light 
truck sales percentage constant in each model year were added to CUV sales for that model year. 
The resulting adjusted EPA distribution estimates for 2011 to 2016 are shown in Table 45. 
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Table 45. New light-duty vehicles sold in U.S. by vehicle type, adjusted (thousands)  

Model 
Year Car CUVs Truck-

SUVs Vans Pickups Total 

2005 8,027 2,141 1,944 1,481 2,300 15,892 
2006 7,993 1,972 1,786 1,166 2,188 15,104 
2007 8,082 2,265 1,969 847 2,113 15,276 
2008 7,319 2,171 1,825 790 1,794 13,898 
2009 5,636 1,304 1,018 368 989 9,316 
2010 6,061 1,851 1,370 559 1,276 11,116 
2011 5,743 2,811 1,465 521 1,479 12,018 
2012 7,393 2,178 1,859 662 1,357 13,449 
2013 8,226 2,590 2,234 571 1,577 15,198 
2014 7,639 3,401 1,872 672 1,929 15,512 
2015 7,899 4,013 2,385 655 1,786 16,739 
2016 7,130 4,447 2,153 630 1,907 16,267 

B.1.3 Source Data: Prediction of Vehicle Sales (2017–2050)  
Predicted sales data, made by the U.S. Energy Information Administration as part of their 
Annual Energy Outlook for 2018, are shown in Table 46 and Figure 25 (EPA, 2019). The EIA 
produces many versions of their predictions representing different scenarios, but the one used in 
Table 46 was the “reference case” that assumes: (1) trend improvement in known technologies 
and (2) economic and demographic trends reflecting “the current central views of leading 
economic forecasters and demographers.”  

 

 

Figure 25. Estimate of distribution of new car sales by model year 
(from Table 39 in www.eia.gov/outlooks/aeo/tables_ref.php)  
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Table 46. Predicted light-duty vehicle sales in U.S. in thousands (EIA, 2018) 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Year Total New 
Car Sales 

Total New 
Light 
Truck 
Sales 

Total 
Vehicles 

Sales 

2017 8,505.3 7,124.1 15,629.4 
2018 8,605.6 7,497.4 16,103.0 
2019 8,524.1 7,527.9 16,052.1 
2020 8,780.2 7,190.8 15,971.0 
2021 8,738.3 6,857.9 15,596.2 
2022 8,816.4 6,798.1 15,614.4 
2023 8,950.7 6,791.5 15,742.2 
2024 9,036.2 6,750.2 15,786.4 
2025 9,088.8 6,768.0 15,856.8 
2026 9,145.8 6,855.3 16,001.2 
2027 9,253.0 6,820.2 16,073.2 
2028 9,385.6 6,814.3 16,199.9 
2029 9,464.1 6,771.2 16,235.3 
2030 9,555.8 6,778.3 16,334.1 
2031 9,635.8 6,752.2 16,388.0 
2032 9,634.7 6,701.3 16,336.0 
2033 9,627.0 6,656.6 16,283.5 
2034 9,685.6 6,648.1 16,333.7 
2035 9,730.6 6,647.3 16,378.0 
2036 9,779.8 6,660.0 16,439.8 
2037 9,847.1 6,637.5 16,484.6 
2038 9,945.1 6,674.6 16,619.8 
2039 10,054.6 6,718.5 16,773.1 
2040 10,138.2 6,742.1 16,880.3 
2041 10,233.8 6,782.2 17,016.0 
2042 10,303.8 6,809.1 17,112.9 
2043 10,404.6 6,866.3 17,270.8 
2044 10,523.6 6,939.3 17,462.9 
2045 10,636.0 7,010.1 17,646.1 
2046 10,716.8 7,089.1 17,805.9 
2047 10,784.6 7,143.6 17,928.1 
2048 10,769.1 7,135.8 17,904.9 
2049 10,856.7 7,215.9 18,072.7 
2050 10,937.9 7,287.4 18,225.3 
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As with the historical vehicle sales data in the previous section, it was estimated that any 
increase in the proportion of light truck sales was due to SUVs categorized as truck-SUVs that 
would have been categorized as CUVs by NHTSA. Therefore, to adjust the EIA estimates to 
correspond to NHTSA’s definitions of CUVs and truck-based SUVs, the number of light trucks 
was reduced to hold the total percentage of light truck sales (Truck-SUVs + Vans + Pickups) 
constant at 2010 levels (28.8% of total vehicles according to Table 45). The number of vehicles 
subtracted from light trucks to hold the light truck sales percentage constant in each model year 
were added to car sales for that model year (Table 47). Additionally, in the absence of available 
data, it was estimated that the relative proportions of the sub-types of light trucks (truck-SUVs, 
pickups, and vans) and the sub-types of cars (passenger cars and CUVs) will remain at the 
adjusted 2016 levels (45.9% truck-SUVs, 13.4% vans, 40.7% pickups among light trucks; 61.6% 
passenger cars and 38.4% CUVs among cars). The resulting adjusted vehicle sales predictions 
for 2017 to 2030 are shown in Table 48.  

Table 47. Adjustment of EIA-estimated vehicle sales to correspond to NHTSA’s definitions  
of vehicle types 

Model 
Year 

EIA Estimated Sales Adjustment 
(Subtracted From 
Light Trucks & 
Added to Cars) 

Adjusted Estimated Sales 

Cars Light 
Trucks Total Cars Light 

Trucks Total Car 
% 

Light 
Truck 

% 
2017 8,505 7,124 15,629 2,617.9 11,123 4,506 15,629 71.2 28.8 
2018 8,606 7,497 16,103 2,854.6 11,460 4,643 16,103 71.2 28.8 
2019 8,524 7,528 16,052 2,899.9 11,424 4,628 16,052 71.2 28.8 
2020 8,780 7,191 15,971 2,586.1 11,366 4,605 15,971 71.2 28.8 
2021 8,738 6,858 15,596 2,361.3 11,100 4,497 15,596 71.2 28.8 
2022 8,816 6,798 15,614 2,296.2 11,113 4,502 15,614 71.2 28.8 
2023 8,951 6,792 15,742 2,252.8 11,203 4,539 15,742 71.2 28.8 
2024 9,036 6,750 15,786 2,198.7 11,235 4,551 15,786 71.2 28.8 
2025 9,089 6,768 15,857 2,196.2 11,285 4,572 15,857 71.2 28.8 
2026 9,146 6,855 16,001 2,241.9 11,388 4,613 16,001 71.2 28.8 
2027 9,253 6,820 16,073 2,186.1 11,439 4,634 16,073 71.2 28.8 
2028 9,386 6,814 16,200 2,143.6 11,529 4,671 16,200 71.2 28.8 
2029 9,464 6,771 16,235 2,090.3 11,554 4,681 16,235 71.2 28.8 
2030 9,556 6,778 16,334 2,068.9 11,625 4,709 16,334 71.2 28.8 
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Table 48. Predicted light-duty vehicle sales in U.S., adjusted (thousands) 

Model 
Year Car CUVs Truck-

SUVs Vans Pickups Total 

2017 6,851 4,272 2,069 605 1,832 15,629 
2018 7,058 4,402 2,132 624 1,888 16,103 
2019 7,036 4,388 2,125 622 1,882 16,052 
2020 7,000 4,366 2,114 618 1,872 15,971 
2021 6,836 4,263 2,065 604 1,828 15,596 
2022 6,844 4,268 2,067 605 1,830 15,614 
2023 6,900 4,303 2,084 610 1,845 15,742 
2024 6,920 4,315 2,090 611 1,850 15,786 
2025 6,950 4,335 2,099 614 1,859 15,857 
2026 7,014 4,374 2,118 620 1,876 16,001 
2027 7,045 4,394 2,128 622 1,884 16,073 
2028 7,101 4,428 2,144 627 1,899 16,200 
2029 7,116 4,438 2,149 629 1,903 16,235 
2030 7,160 4,465 2,162 633 1,915 16,334 

 

B.1.4 Distribution of Vehicle Types Exposed to Potential Crashes  
The vehicle age distribution, as described in Appendix A, was used to estimate the vehicle 
model-year distribution for crash exposed occupants for projection years (2020, 2025, and 
2030).21 For each time period of interest, the proportions of crash-exposed occupants in vehicles 
from each model year (CE OccupantsMY), from Table 34 through Table 39, were combined with 
the proportions of vehicle type by model year, from Table 41 and Table 48, using Equation (28). 
The resulting proportions of vehicle types among crash-exposed occupants in passenger vehicles 
are shown in Table 49. 
 

𝑃𝑃𝑉𝑉𝑟𝑟ℎ𝑠𝑠𝑝𝑝𝑓𝑓𝑟𝑟 𝑅𝑅𝑇𝑇𝑠𝑠𝑟𝑟 =  ���
𝐿𝐿𝑊𝑊ℎ𝑊𝑊𝑐𝑐𝑃𝑃𝑊𝑊𝑃𝑃 𝑇𝑇𝑃𝑃𝑃𝑃𝐿𝐿𝑉𝑉𝑟𝑟ℎ𝑠𝑠𝑝𝑝𝑓𝑓𝑟𝑟 𝑅𝑅𝑇𝑇𝑠𝑠𝑟𝑟

𝐿𝐿𝑊𝑊ℎ𝑊𝑊𝑐𝑐𝑃𝑃𝑊𝑊𝑃𝑃 𝑇𝑇𝑃𝑃𝑃𝑃𝐿𝐿𝑅𝑅𝑟𝑟𝑟𝑟𝑃𝑃𝑓𝑓
�
𝑀𝑀𝑇𝑇

∗  𝐶𝐶𝐸𝐸 𝑂𝑂𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑀𝑀𝑇𝑇�
 

𝑀𝑀𝑇𝑇

 (28) 

where: 
P is the estimated proportion of crash exposures for a given vehicle type over a given range of model 

years, 
Vehicles Sold are annual counts from Tables 41 and 48 by model year, and 

CE Occupants is the proportion of crash-exposed occupants in the given vehicle type for the given 
model year. 

  

                                                 
21 Since the MY<2005 vehicles in the stepping-stone dataset continue to represent MY<2005 vehicles in the 
projection datasets and will not be adjusted for vehicle trends such as shifting proportions of vehicle types, the 
vehicle age distribution for application to this trend is limited to MY2005+ vehicles. For example, for 2030, the 
vehicle age distribution for vehicles to be adjusted for shifting vehicle type proportions would be limited to vehicles 
25-years-old and newer. 
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 Table 49. Estimated proportion of crash exposure by vehicle type (from Equation (28)) 

Dataset 
Calculated 

Over Model 
Years 

Cars CUVs Vans Truck-
SUVs Pickups 

Stepping-
Stone 
2013-2015 

2005-2015 52.79% 15.10% 6.47% 12.44% 13.20% 

2020 2005-2020 49.16% 21.57% 4.49% 13.05% 11.73% 
2025 2005-2025 46.18% 24.89% 4.08% 13.20% 11.65% 
2030 2005-2030 44.51% 26.64% 3.92% 13.24% 11.69% 

B.1.5 Adjustment Factors 

B.1.5.1 Downweighting: Adjustment Factors for Cars, Pickup Trucks, and Vans 
Cars, pickup trucks, and vans are expected to be less common in the future, and thus will be 
downweighted, as explained in Section 2.5.1. Downweighting AF adjustment factor variables for 
cars, pickup trucks, and vans are shown in Table 50. For each future projection year, the AF for 
each vehicle type was estimated as a function of the proportion of crash exposure in both the 
projection year and in the stepping-stone year range (from Table 49) as shown in Equation (29). 
For example, occupants in passenger cars were estimated to make up 52.79 percent of crash-
exposed occupants in MY2005+ vehicles in the stepping-stone dataset compared to only 44.51 
percent of crash-exposed occupants in MY2005+ vehicles in the 2030 projection year. Therefore, 
passenger car occupant cases in the 2030 projection dataset were downweighted by a factor of 
0.843 (44.51/52.79) to reflect the predicted future reduction in passenger car occupants in future 
crashes.  
 
 𝐴𝐴𝐴𝐴(2030)𝑉𝑉𝑟𝑟ℎ𝑠𝑠𝑝𝑝𝑓𝑓𝑟𝑟 𝑅𝑅𝑇𝑇𝑠𝑠𝑟𝑟 = �

𝑃𝑃2030 
𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟

�
𝑉𝑉𝑟𝑟ℎ𝑠𝑠𝑝𝑝𝑓𝑓𝑟𝑟 𝑅𝑅𝑇𝑇𝑠𝑠𝑟𝑟

 (29) 

where: 
AF is the adjustment factor for cases involving that vehicle type, and 

P is the estimated proportion of crash exposure for the vehicle type in a given year/range. 
 

Table 50. Trend adjustment factors for cars, pickup trucks, and vans in projection years 

Crash Year 

Proportion 
of Crash 
Exposure 

(%) 
PCar 

Adjustment 
Factor for 

Cars 
AFCar 

Proportion 
of Crash 
Exposure 

(%) 
PVan 

Adjustment 
Factor for 

Vans 
AFVan 

Proportion 
of Crash 
Exposure 

(%) 
Ppickup 

Adjustment 
Factor for 
Pickups 
AFpickups 

Stepping-
Stone Dataset 52.79% -- 6.47% -- 13.20%  

2020 49.16% 0.931 4.49% 0.694 11.73% 0.889 
2025 46.18% 0.875 4.08% 0.631 11.65% 0.882 
2030 44.51% 0.843 3.92% 0.607 11.69% 0.885 
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B.1.5.2 Upweighting: Adjustment Factors for CUVs and SUVs 
As explained in Section 2.5.1, because both CUVs and truck-SUVs are expected to be more 
common in the future, they are upweighted in the future datasets. Upweighting AFs to be applied 
to cases involving CUVs and truck-SUVs in the stepping-stone dataset were calculated so that 
the total number of vehicles in the dataset did not change. In other words, the AF for CUVs and 
truck-SUVs were calculated to ensure that a decrease in the total weighted number of cars, 
pickup trucks, and vans was matched by an increase of the same magnitude in the total weighted 
number of CUVs and truck-SUVs. Since the AF for CUVs and truck-SUVs varies with the 
dataset to which it is applied, the examples given in this section are for illustration only and do 
not reflect actual calculated AF for CUVs and truck-SUVs in any specific run of the projection 
model.  
 
For each future projection year, the number of occupants expected to convert from cars, pickup 
trucks, and vans to CUVs and truck-SUVs (Nc) was estimated as a function of the weighted 
numbers of cars (Ncar), pickup trucks (Npickup) and vans (Nvan) in the stepping-stone dataset, as 
well as the previously calculated AF for cars (AFcar), pickup trucks (AFpickup) and vans (AFvan), 
using Equation (30). The proportion of the number of converted occupants (Nc) expected to 
convert to CUVs (CCUV) was estimated as a function of the increase in the proportion of CUVs 
relative to the increase in the proportion of truck-SUVs, using Equation (31). The corresponding 
AF for CUVs (AFCUV) can then be calculated using Equation (32). The proportion of the number 
of converted occupants (Nc) expected to convert to truck-SUVs (Ctruck-SUV) and the corresponding 
AF for truck-SUVs (AFtruck-SUV) are calculated using the same method. 
 

𝑁𝑁𝑃𝑃 = 𝑁𝑁𝑝𝑝𝑃𝑃𝑟𝑟 × (1 − 𝐴𝐴𝐴𝐴𝑝𝑝𝑃𝑃𝑟𝑟) +  𝑁𝑁𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑔𝑔𝑠𝑠 × �1 − 𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑔𝑔𝑠𝑠� +  𝑁𝑁𝑣𝑣𝑃𝑃𝑠𝑠 × (1 − 𝐴𝐴𝐴𝐴𝑣𝑣𝑃𝑃𝑠𝑠) (30) 

 

𝐶𝐶𝑃𝑃𝐶𝐶𝑉𝑉 =
(𝑃𝑃𝑃𝑃𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝑃𝑃𝑊𝑊−𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑊𝑊 − 𝑃𝑃2030)𝑃𝑃𝐶𝐶𝑉𝑉

(𝑃𝑃𝑃𝑃𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝑃𝑃𝑊𝑊−𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑊𝑊 − 𝑃𝑃2030)𝑃𝑃𝐶𝐶𝑉𝑉 + (𝑃𝑃𝑃𝑃𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝑃𝑃𝑊𝑊−𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑊𝑊 − 𝑃𝑃2030)𝑟𝑟𝑟𝑟𝑔𝑔𝑝𝑝𝑝𝑝 𝑁𝑁𝐶𝐶𝑉𝑉
 (31) 

 

𝐴𝐴𝐴𝐴𝑃𝑃𝐶𝐶𝑉𝑉 =  
𝑁𝑁𝑃𝑃𝐶𝐶𝑉𝑉 + (𝐶𝐶𝑃𝑃𝐶𝐶𝑉𝑉 ∗ 𝑁𝑁𝑃𝑃)

𝑁𝑁𝑃𝑃𝐶𝐶𝑉𝑉
 (32) 

where: 
Nc is the number off occupants expected to convert from cars, pickup trucks and vans to CUVs and 

truck-SUVs, 
Nvehicle type are the weighted numbers of occupants in these vehicle types in the stepping-stone dataset 

AF are the adjustment factors calculated for each vehicle type, and 
CCUV is the proportion of the increase of CUVs relative to the increase in all SUVs. 

 
Examples of the AF for CUVs and truck-SUVs are shown in Table 51. These examples use 
dummy values for Ncar, Nvan, Npickup, NCUV, and Ntruck-SUV to step through the calculation of AF for 
CUVs and truck-SUVs. Note that values displayed in the table are rounded although all 
calculations were performed on unrounded values.  
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Table 51. Illustrative example of calculation of AF for SUVs and pickups 

  2020 2025 2030 
Weighted annual average number of cars in stepping-stone 
dataset Ncar 50,000* 

Weighted annual average number of CUVs in stepping-
stone dataset NCUV 10,000* 

Weighted annual average number of vans in stepping-stone 
dataset Nvan 5,000* 

Weighted annual average number of pickups in stepping-
stone dataset Npickup 15,000* 

Weighted annual average number of truck-SUVs in 
stepping-stone dataset Ntruck-SUV 20,000* 

Adjustment factor for cars  AFcar 0.931 0.875 0.843 

Adjustment factor for vans  AFvan 0.694 0.631 0.607 

Adjustment factor for pickups AFpickup 0.889 0.882 0.885 

Weighted number of cases converted from cars, pickups, 
and vans to SUVs and CUVs NC 6634 9867 11527 

Proportion of converted cases to be assigned to CUVs CCUV 91.5% 92.8% 93.6% 

Proportion of converted cases to be assigned to truck-SUVs Ctruck-SUV 8.5% 7.2% 6.4% 

Adjustment factor for CUVs* AFCUV 1.607 1.916 2.079 

Adjustment factor for truck-SUVs* AFtruck-SUV 1.028 1.036 1.037 

*Hypothetical values for illustration only. 

B.2 Belt Use Trend Application 
Belt use trends were applied as discussed in Section 2.5.4. Source data and more detailed 
calculations for application to cases in crashes with no fatalities are provided in this appendix. 
Procedures for adjustment for cases in potentially fatal crashes are described in Section 2.5.4. 
 
Historical levels of belt use for the subgroups used in this study were drawn from NOPUS, the 
National Occupant Protection Use Survey. NOPUS results were disaggregated by seat position, 
vehicle type, and age group22 as shown in Table 52. The SUV vehicle type category includes 
CUVs as well as truck-based SUVs. Annual conversion rates for these bins are shown in Table 
53. The conversion rate for front seat passenger car occupants from 2008 to 2009 of 7.9 percent 
reflects, for example, that belt non-use dropped from 15.635 percent in 2008 to 14.395 percent in 

                                                 
22 Subramanian, Rajesh, chief, Mathematical Analysis Division, National Center for Statistics and Analysis, NHTSA, 
personal communication, June 6, 2017. 
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2009. This drop equates to a 7.9 percent reduction in belt non-use, or conversion of 7.9 percent 
of unbelted occupants to belted occupants. Average conversion rates over the 2008 to 2016 
period are shown in Table 54, along with the estimated future conversion rates calculated to be 
half of the historical annual conversion rate in each category. 

Table 52. Estimated belt use rates by seat position, vehicle type, and age group 

Front Seat 
  2008 2009 2010 2011 2012 2013 2014 2015 2016 

All ages 
(by 
vehicle 
type) 

Passenger 
Car 84.4% 85.6% 86.2% 84.9% 87.0% 88.4% 88.1% 90.3% 91.1% 

Van/SUV 86.1% 86.9% 88.0% 87.0% 88.9% 89.6% 89.1% 90.3% 92.3% 

Pickup 
Trucks 73.9% 74.1% 75.5% 73.6% 77.0% 78.0% 77.2% 80.8% 83.2% 

Rear Seat 
  2008 2009 2010 2011 2012 2013 2014 2015 2016 

All 
vehicle 
types  
(by age 
group) 

Age 8-15 80.5% 76.2% 75.4% 79.6% 83.1% 82.6% 82.2% 82.0% 86.0% 

Age 16-
24 69.4% 65.9% 73.4% 71.0% 67.2% 77.5% 68.0% 72.6% 78.2% 

Age 25-
69 71.2% 63.9% 70.7% 69.9% 71.4% 73.1% 63.9% 64.4% 76.8% 

Age 70+ 74.3% 82.4% 81.4% 72.8% 80.3% 81.8% 80.9% 81.3% 74.9% 
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Table 53. Annual belt use conversion rates by seat position, vehicle type, and age group 

Front Seat 
  2009 2010 2011 2012 2013 2014 2015 2016 

All 
ages 
(by 
vehicle 
type) 

Passenger 
Car 7.9% 4.4% -9.5% 13.9% 10.4% -2.7% 18.8% 7.9% 

Van/SUV 6.1% 8.4% -8.5% 14.2% 7.0% -5.1% 11.2% 20.6% 

Pickup 
Trucks 0.9% 5.3% -7.4% 12.9% 4.2% -3.7% 15.6% 12.5% 

Rear Seat 
  2009 2010 2011 2012 2013 2014 2015 2016 

All 
vehicle 
types 
(by age 
group) 

Age 8-15 -22.2% -3.2% 17.1% 17.0% -2.8% -2.6% -0.9% 22.3% 

Age 16-24 -11.4% 21.9% -8.9% -13.1% 31.3% -42.2% 14.4% 20.5% 

Age 25-69 -25.0% 18.7% -2.6% 5.0% 5.9% -34.1% 1.4% 34.7% 

Age 70+ 31.6% -5.7% -46.7% 27.7% 7.5% -5.0% 2.0% -33.9% 
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Table 54. Average annual conversion rates by seat position, vehicle type, and age group 

 

 

 
Average Historical 
Conversion Rates 

2008-2016 

Predicted Future 
Conversion Rate 
(Half of Average 

Historical Conversion 
Rates 

2008-2016) 
 Front Seat 

All ages 
(by 
vehicle 
type) 

 Passenger Car 6.39% 3.20% 

 Van/SUV 6.73% 3.37% 

 Pickup Trucks 5.04% 2.52% 

 Rear Seat 

All 
vehicle 
types 
(by age 
group) 

 Age 8-15 3.09% 1.54% 

 Age 16-24 1.56% 0.78% 

 Age 25-69 0.50% 0.25% 

 Age 70+ * -2.81% * -1.41% * 

*As discussed in Section 2.5.4, estimated conversion rates shown here for rear-seat occupants 70 or older were 
deemed to be unreliable and not used for the projection model. 
 
Rates of belt non-use for the past were calculated by subtracting the belt use rates in Table 52 
from 100 percent. Rates of belt non-use for the future were estimated using the conservative 
estimate that future annual conversion rates will be half of historical rates, shown in Table 54. 
These predicted future rates are shown in Table 55. Calculation of the case weight AF for belt 
non-use in Table 12 were estimated as a function of past non-use rates (calculated from data in 
Table 52) as well as the future non-use rates estimated in Table 55. For example, non-use of belts 
among front-seat passenger car occupants was expected to drop from 11.1 percent in 2013 to 
2015 to 7.8 percent in 2020. Therefore, unbelted front-seat passenger car occupants in the 2020 
dataset were downweighted using an AF of 0.707 (7.84/11.08) to reflect this expected drop in 
non-use. The steps of this calculation are shown in Table 56. Note that values displayed in the 
table are rounded although all calculations were performed on unrounded values. 
  



B-17 

 
Table 55. Predicted future rates of belt non-use 

Front Seat 
  2016 2017 2018 2019 2020 2025 2030 
All ages 
(by 
vehicle 
type) 

Passenger Car 8.9% 8.6% 8.4% 8.1% 7.8% 6.7% 5.7% 
Van/SUV 7.7% 7.4% 7.2% 6.9% 6.7% 5.6% 4.8% 
Pickup Trucks 16.8% 16.4% 16.0% 15.6% 15.2% 13.4% 11.8% 

Rear Seat 
  2016 2017 2018 2019 2020 2025 2030 
All 
vehicle 
types 
(by age 
group) 

Age 8-15 14.0% 13.8% 13.6% 13.4% 13.2% 12.2% 11.3% 
Age 16-24 21.8% 21.6% 21.4% 21.3% 21.1% 20.3% 19.5% 
Age 25-69 23.2% 23.1% 23.1% 23.0% 23.0% 22.7% 22.4% 
Age 70+* 25.1% 25.4% 25.8% 26.1% 26.5% 28.2% 29.9% 

* As discussed in Section 2.5.4, estimated conversion rates for rear-seat occupants 70 or older were deemed to 
be unreliable. The corresponding non-use rates for this age group are shown in this table but were not used for 
the projection model. 
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Table 56. Adjustment factors for cases of belt non-use for projection models 

Front Seat 

 Rate Non-Use Adjustment Factor for 
Belt Non-Use Cases 

  2013-2015 
Average 2020 2025 2030 2020 2025 2030 

All ages 
(by 
vehicle 
type) 

Passenger Car 11.1% 7.8% 6.7% 5.7% 0.707 0.601 0.511 
Van/SUV 10.3% 6.7% 5.6% 4.8% 0.650 0.547 0.461 
Pickup Trucks 21.3% 15.2% 13.4% 11.8% 0.712 0.627 0.552 

Rear Seat 

 Rate Non-Use Adjustment Factor for 
Belt Non-Use Cases 

  2013-2015 
Average 2020 2025 2030 2020 2025 2030 

All 
vehicle 
types 
(by age 
group) 

Age 8-15 17.8% 13.2% 12.2% 11.3% 0.741 0.685 0.634 
Age 16-24 27.3% 21.1% 20.3% 19.5% 0.773 0.743 0.715 
Age 25-69 32.8% 23.0% 22.7% 22.4% 0.700 0.691 0.682 
Age 70+* 18.7% 26.5% 28.2% 29.9% 1.0* 1.0* 1.0* 

* As discussed in Section 2.5.4, estimated conversion rates for rear-seat occupants 70 or older were deemed to be 
unreliable. The corresponding non-use rates for this age group are shown in this table but were not used for the 
projection model. 

B.3 Child Restraint Use Trend Application 
Child restraint use trends were applied as described in Section 2.5.5. Source data and more 
detailed calculations are provided in this appendix.  
 
Historical levels of age-appropriate restraint use for children 7 or younger were drawn from 
usage rates documented in the annual National Survey of the Use of Booster Seats (Glassbrenner 
& Ye 2007; Glassbrenner & Ye 2008; Pickrell & Ye 2010; Pickrell & Ye 2013; Pickrell & Choi 
2014; Li et al., 2016). As explained in Section 2.5.5, children in NSUBS who were documented 
as using the type of restraint recommended at NHTSA’s safercar.gov website for their observed 
age group were defined in the projection model as appropriately restrained. This classification 
was made for the purpose of regrouping cases for reweighting, and does not assume that child 
restraints were used properly, or that outcomes in cases involving child restraint misuse are 
similar to cases involving proper-use.  
 
The compiled rates of observed restraint use by restraint-type are summarized in Table 57. While 
the rates from previous years were rounded to the nearest percent, the 2015 rates were provided 
to one-tenth of a percent; this more detailed information was used in the analysis since it was 
available. Additionally, note that the percentages of children in each age group do not all sum to 
100%, reflecting cases of unknown restraint use. The percentages of children in each age group 
estimated to be in appropriate restraints therefore show the percentage of children with known 
restraint status who are in appropriate restraints. For example, the 72 percent of children under 
age 1 who were documented in rear-facing child safety seats in 2006 (Table 57) was equivalent 
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to the estimate that 75 percent of children with known restraint status were in age-appropriate 
restraints (Table 58). 

Table 57. Estimated restraint use by age 
(bold rates indicate age-appropriate use as defined in Section 2.5.5) 

Age 
(years)  2006 2007 2008 2009 2011 2013 2015 

<1 

Rear-Facing Child 
Safety Seat 72% 81% 86% 83% 86% 90% 87.4% 

Front-Facing Child 
Safety Seat 21% 14% 12% 15% 11% 7% 9.2% 

Booster Seat (Overall)        
High- Backed Booster 
Seat        

Backless Booster Seat        

Seat Belt 2%       

No Restraint Observed 1% 2% 1% 2% 2% 2% 2.6% 

1-3 

Rear-Facing Child 
Safety Seat 4% 3% 2% 3% 7% 10% 9.4% 

Front-Facing Child 
Safety Seat 69% 73% 72% 76% 75% 73% 67.6% 

Booster Seat (Overall) 19%      13.6% 
High- Backed Booster 
Seat  9% 11% 11% 9% 7% 11.0% 

Backless Booster Seat  5% 3% 3% 3% 3% 2.6% 

Seat Belt 5% 6% 4% 4% 2% 3% 3.7% 

No Restraint Observed 3% 4% 8% 4% 4% 5% 5.7% 

4-7 

Rear-Facing Child 
Safety Seat     0  0.2% 

Front-Facing Child 
Safety Seat 17% 13% 12% 14% 18% 20% 17.9% 

Booster Seat (Overall) 41%      44.5% 
High- Backed Booster 
Seat  22% 26% 24% 25% 26% 22.6% 

Backless Booster Seat  15% 17% 17% 21% 20% 21.9% 

Seat Belt 33% 35% 34% 32% 25% 24% 25.8% 

No Restraint Observed 9% 15% 11% 13% 10% 9% 11.6% 
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Table 58. Appropriate restraint use as percentage of children with known restraint status 

Age 
(years)  2006 2007 2008 2009 2011 2013 2015 

<1 
Appropriate Restraint 75.0% 83.5% 86.9% 83.0% 86.9% 90.9% 88.1% 
Inappropriate Restraint 25.0% 16.5% 13.1% 17.0% 13.1% 9.1% 11.9% 

1-3 
Appropriate Restraint 73.0% 76.0% 74.0% 78.2% 82.0% 82.2% 77.0% 
Inappropriate Restraint 27.0% 24.0% 26.0% 21.8% 18.0% 17.8% 23.0% 

4-7 
Appropriate Restraint 58.0% 50.0% 55.0% 55.0% 64.6% 66.7% 62.6% 
Inappropriate Restraint 42.0% 50.0% 45.0% 45.0% 35.4% 33.3% 37.4% 

B.3.1 Conversion Rates to Appropriate Child Restraint Use 
Conversion rates from inappropriate restraint to appropriate restraint in each age group are 
shown in Table 59. Using Equation (33), the 34 percent conversion rate for infants under age 1 
from 2006 to 2007 reflects, for example, that inappropriate restraint dropped from 25 percent in 
2006 to 16.5 percent in 2007: (25% - 16.5%)/25%=34%. This drop represents a move of 34 
percent of inappropriately restrained children to appropriate restraints.  
 
 𝐶𝐶𝑃𝑃𝑃𝑃𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑊𝑊𝑃𝑃𝑃𝑃 𝑈𝑈𝑃𝑃𝑡𝑡𝑊𝑊 (𝑦𝑦𝑊𝑊𝑃𝑃𝑐𝑐 𝑃𝑃) = (𝐼𝐼𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑛𝑛−1− 𝐼𝐼𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑛𝑛)

𝐼𝐼𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑛𝑛
 (33) 

where: 
Conversion Rate is the proportion of inappropriately restrained children who convert to appropriate 

use the following year, and 
Inappropriaten is the inappropriate use rate in year n 

 
For years where appropriate restraint data were unavailable (2010, 2012, 2014), annual 
conversion rates were estimated in the missing year and the subsequent year using Equation (34), 
assuming equal conversion rates in consecutive years to account for the two-year change in 
restraint use.  
 

𝐶𝐶𝑃𝑃𝑃𝑃𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑊𝑊𝑃𝑃𝑃𝑃 𝑈𝑈𝑃𝑃𝑡𝑡𝑊𝑊 (𝑦𝑦𝑊𝑊𝑃𝑃𝑐𝑐 𝑃𝑃) = 𝐶𝐶𝑃𝑃𝑃𝑃𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑊𝑊𝑃𝑃𝑃𝑃𝑈𝑈𝑃𝑃𝑡𝑡𝑊𝑊 (𝑇𝑇𝑊𝑊𝑃𝑃𝑐𝑐 𝑃𝑃 + 1) =  1− �𝐼𝐼𝑛𝑛𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑛𝑛+1
𝐼𝐼𝑛𝑛𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑛𝑛−1

  (34) 

Table 59. Annual conversion rate to appropriate restraint use  

Age 
(years) 2007 2008 2009 2010 2011 2012 2013 2014 2015 

<1 34.0% 20.4% -29.5% 12.1% 12.1% 16.8% 16.8% -14.4% -14.4% 
1-3 11.1% -8.3% 16.2% 9.1% 9.1% 0.5% 0.5% -13.6% -13.6% 
4-7 -19.0% 10.0% 0.0% 11.4% 11.4% 2.9% 2.9% -5.9% -5.9% 

 
Average conversion rates over the 2007 to 2015 period are shown in Table 60, along with the 
more conservative estimates used for projections of half of the historical annual conversion rates. 
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Table 60. Average annual conversion to appropriate restraint rates by age group 

Age 
(years) 

Average Historical 
Conversion Rates 

2007-2015 

Half of Average Historical 
Conversion Rates 

2007-2015 
<1 6.00% 3.00% 
1-3 1.22% 0.61% 
4-7 0.85% 0.42% 

B.3.2 Adjustment Factors 
Adjustment factors for inappropriate restraint use: Rates of inappropriate restraint use for the 
2013 to 2015 period were drawn from data in Table 58, with missing 2014 estimates calculated 
using estimated 2014 conversion rates from Equation (34). Rates of inappropriate restraint use 
for the projection years (2020, 2025, and 2030) were estimated by application of the conservative 
estimate of future conversion rates (half of historical rates). Summarized rates are shown in 
Table 61. The AF to be multiplied by the case weight for each stepping-stone case involving a 
child who was not in an age-appropriate restraint was calculated as a ratio of the predicted 
inappropriate-restraint rate in the targeted future year divided by the inappropriate-restraint rate 
in 2013 to 2015 for that category. The resulting case-reweighting AF for each age group in the 
projection years 2020, 2025, and 2030 are shown in Table 62.  

Table 61. Estimated annual rates of inappropriate use 

Age 
(years) 2013 2014 2015 

Average 
2013-
2015 

2020 2025 2030 

<1 9.1% 10.4% 11.9% 10.46% 10.22% 8.77% 7.53% 
1-3 17.8% 20.2% 23.0% 20.36% 22.31% 21.64% 20.98% 
4-7 33.3% 35.3% 37.4% 35.35% 36.61% 35.84% 35.09% 

 
Table 62. Adjustment factors for cases involving inappropriately restrained children 

Age 
(years) 2020 2025 2030 

<1 0.976 0.839 0.720 
1-3 1.096 1.063 1.031 
4-7 1.036 1.014 0.993 

 
Adjustment factors for appropriate restraint use: As explained in Section 2.5.5, the AF to be 
applied to cases involving appropriately restrained children in the stepping-stone dataset was 
calculated so that the total number of cases in each age group did not change. In other words, the 
case weight AF for cases involving appropriately restrained children is determined to guarantee 
that an increase/decrease in the total weighted number of inappropriately restrained cases was 
matched by a decrease/increase of the same magnitude in the total weighted number of 
appropriately restrained cases. Accordingly, the AF calculated for each category of appropriately 
restrained cases is a function of results from the stepping-stone dataset, in contrast to the AF for 
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inappropriately restrained children that is estimated solely based on child restraint use 
projections in the population. Since the AF for appropriate restraint use varies with the dataset to 
which it is applied, the examples given in this section are for illustration only and do not reflect 
the actual calculated AF for appropriate restraint use in any specific run of the projection model.  
 
For each future projection year in each age group, the AF in appropriate-use cases was estimated 
as a function of the weighted numbers of inappropriate use cases (NI) and appropriate use cases 
(NA) in the stepping-stone dataset, as well as the previously calculated AF for inappropriate use 
(AFI) for the age group. Using these estimates, the weighted number of children in an age group 
expected to convert from inappropriate use or non-use (NC) can be estimated by Equation (35). 
The corresponding AF for appropriate restraint use cases (AFA) can then be calculated so that the 
same number of children (NC) are estimated to convert to appropriate restraint use (Equation 
(36)).  
 

𝑁𝑁𝑃𝑃 = 𝑁𝑁𝐼𝐼 × (1 − 𝐴𝐴𝐴𝐴𝐼𝐼)  (35)  
 

𝐴𝐴𝐴𝐴𝑅𝑅 =  
𝑁𝑁𝑅𝑅 + 𝑁𝑁𝑃𝑃
𝑁𝑁𝑅𝑅

   (36)   
 

where: 
NI and NA are the numbers of inappropriate and appropriate restraint cases in the stepping-stone 

dataset, 
NC is the number of inappropriate restraint cases expected to convert to appropriate restraint, and 

AFA is the adjustment factor for appropriate restraint cases. 
 

Examples of AF calculated using Equations (35) and (36) for the under-1-year-old group are 
shown in Table 63. These examples use dummy values for NI and NA and step through the 
calculation of the AF for appropriate restraint cases. Table 63 shows, for this illustrative 
example, that the AF for appropriate restraint cases with children under 1 year old in the 2030 
projection would be 1.042 reflecting that the 420 children conservatively estimated to be 
converted from the inappropriate use or non-use category will be converted to the appropriate use 
category. Thus, the final 2030 projection dataset in this example would still have a total of 
11,500 weighted child cases in this age range, but the proportion of appropriately restrained 
children would be increased.  
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Table 63. Illustration of calculation of AF for appropriate restraint cases (AFA)  
(for children less than 1 year old, using the more conservatively estimated AFI values  

estimated in Table 62) 

 Weighted annual 
average number 
inappropriately 
restrained cases 
in stepping-stone 

dataset 

Weighted 
annual average 

number 
appropriately 

restrained cases 
in stepping-

stone dataset 

Adjustment 
factor for 

inappropriate 
restraint cases 
(from Table 

62) 

Weighted 
number of cases 
converted from 
Inappropriate 
to appropriate 

restraint 

Adjustment 
factor for 

appropriate 
Restraint 

cases 

 NI NA AFI NC AFA 
2020 

1,500 10,000 
0.976 36 1.004 

2025 0.839 241.5 1.024 
2030 0.720 420 1.042 
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Appendix C: Crash Avoidance Countermeasures  

C.1 FMVSS No. 126 Electronic Stability Control  

C.1.1 ESC Target Population 
The target population for ESC and subsets of that population were defined based on the 
categories used in the ESC Final Regulatory Impact Analysis (NHTSA, 2007a). The 
subpopulations were defined using the following crash parameters: 

• Fatal/non-fatal crashes, 
• Crash type: single vehicle rollover/other single vehicle crash excluding pedestrian or 

animal/culpable multi-vehicle crashes, and 
• Vehicle type: passenger car/light truck or van. 

Cases were sorted into these categories using the following NASS CDS variables.  

Fatal crash: The crash was categorized as fatal if any of the following were true, and non-fatal 
otherwise. The code used the following NASS CDS variable definitions:  
 

• OA/TREATMENT=1, for at least one person in the crash (not just same occupant or 
vehicle as the case occupant), or 

• ACC/ATREAT=1. This derived variable indicates the most intensive treatment given to 
any occupant of a towed in-transport CDS applicable vehicle in the crash. 

 
Single-vehicle rollover: Rollovers in the target population were identified to establish a rollover 
population comparable to that used in estimation of ESC effectiveness rates using the following 
NASS CDS variable definitions: 

• ACC/VEHFORMS=1 (single vehicle crash), and 
• GV/ROLLOVER>=1 (quarter turns) for the occupant’s vehicle, and 
• For EVENT/accseq=1: EVENT/OBJCONT=31 (Rollover-Overturn), 32 (Rollover-

Endover), 34 (Jackknife), 61(Ground)23, and 
• GV/ROLLOBJ, nothing but: Turn/Fall-Over (31), End-over-end (32), Jackknife (34), 

ground (61).24 

Single-vehicle crashes, not including pedestrians/animals: The following NASS CDS 
variables were used to identify cases in this category:  
 

• GV/ACCTYPE=1, 2, 4-7, 9-12, 14-16 
 
                                                 
23 For the cases in the source dataset where this variable was unknown (0.25% of events), it was assumed that the 
case was NOT in the target population. 
24 In cases in our source dataset, this variable was unknown in approximately 1.4 percent of crashes. Given that 88 
percent of crashes were not rollovers, this proportion means that this variable may have been unknown in more than 
10 percent of rollover crashes. ROLLOBJ was in one of the defined target population categories in the majority of 
rollover crashes where this variable was known, so it was assumed for the purpose of this analysis that rollover cases 
with “unknown” ROLLOBJ cases are in the target population. 
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Note that this definition included impact with stationary objects (12) and parked vehicles (11), 
but excluded pedestrian/animal (13) and bicycle (73) impacts.  
 
Culpable multi-vehicle crashes: If the occupant’s vehicle is a “culpable vehicle” by the 
definition below, then vehicle type, effectiveness, and penetration are based on the occupant’s 
vehicle. If another vehicle is the “culpable vehicle” then effectiveness for an occupant case is 
calculated based on the other (culpable) vehicle’s vehicle type and model year, even if the other 
vehicle is an older-model vehicle that would not otherwise be included in the analysis. To 
identify the culpable vehicle in a crash, the following definition was coded, using NASS CDS 
variables: 
 

• GV/ACCTYPE=20, 24, 28, 34:93 (all multivehicle except struck vehicles in front-to-rear 
crashes)  

AND 
• GV/PREEVENT in 

o 05='POOR ROAD CONDIT' 
o 06='TRAVEL TOO FAST' 
o 08='OTH CONTROL LOSS' 
o 09='UNK CONTROL LOSS' 

AND NOT 
• Any one of the following: 

o TRAVELSP<=10 mph 
o MANEUVER in 0, 1 (no driver, no maneuver) 
o PREMOVE in 0:4, 5, 13, 7, 8, 9 (no driver, stopped or starting in road, backing 

up, disabled or parked in travel lane, leaving or entering a parking space 
o PREISTAB in 0, 1, 7, U (no driver, tracking, other vehicle loss of control, 

unknown) 
 
Vehicle type (PC/LTV): Vehicle type was categorized as in Table 64, using the 
GV/BODYTYPE variable.  
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Table 64. Vehicle type categories for application of ESC 

PC LTV 
NASS CDS variable GV/Body Type in: 
VALUE BODYTYPE 
 
 01='CONVERTIBLE' 
 02='2DR SEDAN/HT/CPE' 
 03='3DR/2DR HATCHBAK' 
 04='4-DR SEDAN/HDTOP' 
 05='5DR/4DR HATCHBAK' 
 06='STATION WAGON' 
 07='HATCHBACK DR UNK' 
 08='OTHER AUTOMOBILE' 
 09='UNK AUTO TYPE' 
 10='AUTO BASE PICKUP' 
 11='AUTO BASED PANEL' 
 12='LARGE LIMOUSINE' 
 13='THREE-WHEEL AUTO' 
 17='3-DOOR COUPE' 
 49='UNK LIGHT VEH' 

NASS CDS variable GV/Body Type in: 
 
 14='COMPACT UTILITY' 
 15='LARGE UTILITY' 
 16='UTILITY STAWAGON'  
 19='UTILITY UNK BODY' 
 20='MINIVAN' 
 21='LARGE VAN' 
 22='STEP VAN <10K LB' 
 24='VAN BASED SCHBUS' 
 25='VAN BASED OTHBUS' 
 28='OTHER VAN TYPE' 
 29='UNKNOWN VAN TYPE' 
 30='COMPACT PICKUP' 
 31='LARGE PICKUP' 
 32='PICKUP/CAMPER' 
 33='CONVERT PICKUP' 
 39='UNK PICKUP TRUCK' 
 40='CAB CHASSIS' 
 41='TRUCK BASE PANEL' 
 42='LT TRK MOTORHOME' 
 45='OTH LIGHT TRUCK' 
 48='UNK LIGHT TRUCK' 
 79=‘UNKNOWN TRUCK’* 

*IF TOWHITCH=0 or 9 

C.1.2 ESC Effectiveness 
ESC effectiveness reflects the percentage of crashes in each subpopulation of the target 
population that are completely prevented, i.e., the percentage by which case weight is reduced 
when the countermeasure is applied. 
 
Effectiveness estimates for fatal target subpopulation categories were from Kahane (2014b). ESC 
effectiveness for each non-fatal target subpopulation category was based on analyses by Dang 
(2007) and Sivinski (2011), which are summarized in Table 65. Table 66 summarizes the 
effectiveness values ultimately used for each target population in the model, based on all these 
sources. For non-fatal, single-vehicle crashes, the effectiveness in this model was calculated by 
averaging the estimates made by Dang and Sivinski, as an average of log(1-E) and effectiveness 
in culpable multi-vehicle crashes was based on Dang’s estimate, which was believed to be more 
likely based on positive effectiveness fatality analyses.25 Confidence intervals were reported 
where available for potential use in future sensitivity analysis.   

                                                 
25 Charles J. Kahane, Bowhead Logistics Solutions, LLC, Alexandria, VA, personal communication, 2018. 
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Table 65. Effectiveness estimates (%) from source studies for non-fatal subpopulations of the ESC target 
population (with confidence intervals where available) 

 PC LTV 
NON-FATAL (Sivinski, 2011)   
Single-vehicle rollover 72.2% 

(14.3 – 91.0%) 
64.1% 

(45.9 – 76.1%) 
Other single-vehicle excl ped/animal 32.3% 

(-1.3 – 54.8%) 
56.8% 

(48.8 – 63.6%) 
Culpable multi-vehicle 0% 0 
NON-FATAL (Dang, 2007)    
Single-vehicle rollover 64% 

(50-75%) 
85% 

(79-90%) 
Other single-vehicle/run off road excl ped/animal 45 69 
Culpable multi-vehicle 13% 

(7-18%) 
16% 

(7-23%) 
 

Table 66. Final ESC effectiveness estimates used in the model  
(with confidence intervals where available) 

 PC LTV 
FATAL (at least one in crash) (Kahane, 2014b)   
Single-vehicle rollover 59.5% 

(48.7 – 68.1%) 
74.0% 

(67.7 – 79.1%) 
Other single-vehicle excl ped/animal 31.3% 

(22.1 – 39.4%) 
45.5% 

(39.2 – 51.1%) 
Culpable multi-vehicle 16.1% 

(4.3 – 26.1%) 
16.1% 

(7.8 – 23.7%) 
NON-FATAL    
Single-vehicle rollover 68.3% 76.8% 
Other single-vehicle excl ped/animal 38.0% 68.0% 
Culpable multi-vehicle 13.0% 

(7 – 18%) 
16.0% 

(7 – 23%) 
 
The source studies used to develop the effectiveness estimates based their analyses on the risk of 
ESC relevant crashes (relative to control group crashes) in vehicle models prior to the 
introduction of ESC versus following the addition of ESC. Sivinksi noted that this strategy led to 
bias due to changes other than ESC that took place at this time, contributing to the calculated 
effectiveness. However, because major vehicle redesigns were already taken into account and 
Sivinski indicated that there were no significant changes in static stability factor during the 
period of his analysis, it was not likely that such changes during the period of these effectiveness 
studies were also addressed in any other countermeasure in the projection model. Therefore, 
although it is possible that some of the improvements captured in these effectiveness studies may 
have resulted from improvements other than ESC, there was little risk of double-counting those 
other improvements in the model. In other words, although some of the improvements captured 
may not have been a direct result of ESC, they are expected to reflect real improvements not 
otherwise captured by the model and are therefore appropriate to include in the model. 
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C.1.3 ESC Fleet Penetration 
The following sources were used to estimate penetration of ESC into vehicles by model year in 
Table 67: 
 

• 2005 – 2009 Digitized from Sivinski (2011) 
• 2010 and later, from Ward’s Automotive Yearbook 2007 to 2016 per Webb (2017) 

 

Table 67. Penetration of ESC by vehicle model year (αMY) 

Model Year αMY (%) 
PC LTV 

≤ 2004 16.4 16.8 
2005 14.3 21.6 
2006 20.2 33.7 
2007 22.1 53.5 
2008 25.0 69.3 
2009 47.1 84.7 
2010 76.0 87.0 
2011 92.0 94.0 

2012-2030 100.0 100.0 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of ESC 
among vehicles in projection crash years was estimated in Table 68. For example, the table 
shows that 99 percent of passenger vehicle occupants will be in vehicles equipped with ESC by 
2030. By that time, only 1 percent of occupants are projected to be in older vehicles without 
ESC. 

Table 68. Penetration of ESC in projection target years (Overall βTY) 

Crash Year βTY (%) 
PC LTV 

2014 59.2 74.6 
2020 84.0 90.7 
2025 95.1 97.3 
2030 99.0 99.4 

 

C.2 Automatic Emergency Braking With Forward Collision Warning 
The effectiveness of the very diverse forward collision avoidance systems in the past and future 
U.S. fleet was estimated based on past field data for vehicles that had FCW and AEB systems as 
an option. These estimates can be updated as information becomes available for more recent 
designs. Past penetration into the fleet was based on data collected by NCAP on recommended 
safety technologies in the fleet. Estimates of future system penetration were based on the 2016 
voluntary agreement on AEB by U.S. manufacturers, NHTSA, and IIHS which can be found in 
NHTSA’s Docket on AEB initiatives. Manufacturers representing 99% of the U.S. passenger 
vehicle fleet committed to a voluntary agreement with NHTSA and IIHS to make AEB systems, 
including an FCW component and a CIB (crash imminent braking) component, standard on 
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substantially all their vehicles. The systems meeting the agreement are required to pass certain 
minimum standards. Note that although separate effectiveness estimates have been made for 
vehicles with FCW alone and vehicles with AEB (including FCW and CIB), penetration 
estimates to date have shown that auto-braking systems such as CIB or AEB have been 
introduced at a similar pace as FCW. Therefore, in the absence of separate estimates of the crash 
prevention effectiveness of the CIB components of AEB, AEB was modeled in a single crash 
avoidance countermeasure in the current projection model. The crash mitigation effectiveness of 
AEB systems was estimated separately in Appendix D.1.2. 

C.2.1 AEB with FCW Target Population  
For the purposes of this analysis, the target population for frontal crash avoidance technology 
(AEB with FCW) was defined to include CDS-eligible crashes between the front of a striking 
vehicle and the rear of a struck vehicle. The following NASS CDS variables were used to define 
the case vehicles in this target population: 
 
Crashes in target population:  
 

• Light vehicles: BODYTYPE in (0:22, 24:49), and 
• ACCTYPE in (11, 20:33). 

• Striking vehicles:  
o ACCTYPE in (11, 20, 24, 28) or other vehicle ACCTYPE in (21:23, 25:27, 

29:30),  
o ACCTYPE in (32, 33) and PREEVENT in (50:52), or 
o ACCTYPE in (32, 33) and other vehicle PREMOVE not in (8:13,15:17). 

• Struck vehicles:  
o ACCTYPE in (21:23, 25:27, 29:30) or other vehicle ACCTYPE in (11, 20, 

24, 28),  
o ACCTYPE in (32, 33) and other vehicle PREEVENT in (53), or 
o ACCTYPE in (32, 33) and other vehicle PREMOVE in (1:7, 14). 

 
Previous estimates of the effectiveness of forward collision avoidance technologies (NHTSA, 
2014) excluded the following types of cases from the target population because they were 
believed to be so severe that current crash avoidance technology would not be able to prevent 
them: 
 

• Crashes with closing speeds greater than 50 mph in which there was a fatality in the lead 
vehicle,  

• Crashes in which there was a fatality in the striking vehicle after an impact with a large 
truck or trailer, and  

• Crashes involving the lead vehicle cutting into the lane of the striking vehicle.  
 

Since closing speeds could not be reliably estimated from data in the source cases, all crashes 
involving a fatality were excluded from the target population in the projection model. Crashes 
involving the lead vehicle cutting into the lane of the striking vehicle were excluded by the target 
population definition above.  
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Although it has been suggested that a vehicle approaching the rear of another but skidding 
sideways as a result of braking, with its side colliding with the vehicle ahead, would be in the 
target population for rear-impact crash avoidance (NTSB 2015), these crashes were not included 
in the target population in the current analysis. Head-on frontal crashes, frontal crashes into fixed 
objects, and intersection crashes were also excluded from the target population. Although these 
crash scenarios have been identified as potentially benefitting from frontal crash avoidance 
technology (Anderson et al., 2012), they are outside of the scope of the target population defined 
by the effectiveness estimates used in this version of the model. 

C.2.2 AEB with FCW Effectiveness 
Studies estimating the solo effectiveness of FCW have used simulation, field data, and NCAP 
results to estimate that it can prevent 6-38 percent of rear-impact crashes (Najm et al., 2006; 
Kusano et al., 2014; Fildes et al., 2015; Cicchino, 2016). Some of these studies have had a 
specific target population; for example, Kusano et al., estimated average 29 percent effectiveness 
in lead-vehicle stopped rear impacts with a closing speed of less than 45 mph. Estimates based 
on simulation or laboratory studies additionally need to be adjusted for turn-off rates that have 
been estimated at 17 percent for auditory warning systems, 6 percent for haptic systems 
(Flannagan et al., 2016) and 7 percent averaged across several types of systems (Reagan et al., 
2018).  
 
More recent field data collected on vehicles where frontal crash avoidance systems were optional 
analyzed insurance and State police data to compare the crash histories of paired models of 
vehicles with and without AEB systems with FCW (Cicchino, 2017a, 2019). Results from these 
studies, which showed 50 percent overall average effectiveness at rear impact crash prevention, 
were selected for application in the projection model because they were the most recent field 
data available. Since these results reflect field experience with vehicles where the system may be 
turned off, no adjustment needs to be made to account for turn-off rates.  
 
The Cicchino insurance-based studies estimated higher crash prevention effectiveness for crashes 
with an injury in the striking vehicle (56%) or the struck vehicle (59%) than for all crashes on 
average. These higher levels of effectiveness were not applied to the subpopulations of crashes in 
the projection model with injuries, given that the crash mitigation effects of AEB were also 
modeled (see Appendix D.1), which would be expected to further contribute to the reduction of 
rear-impact injury crashes.  

C.2.3 AEB With FCW Fleet Penetration 
For this countermeasure, adjusted effectiveness for occupants in both striking and struck vehicles 
was calculated based on the estimated likelihood that the striking vehicle would be equipped 
with AEB technology with FCW. Therefore, all penetration estimates for this countermeasure 
were based on the model year of the striking vehicle.  
 
The following sources were used to estimate penetration by model year in Table 69: 
 

• 2013 to 2018: Data collected by the NCAP program on the installation rate of crash 
avoidance technology (NHTSA, 2018b), specifically CIB and FCW, and 
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• 2019+: March 2016 voluntary industry commitment to advance AEB technology (NHTSA, 
2016b). 

 
For the purpose of estimation in the projection model, the penetration of AEB in model years 
prior to 2013 was defined to be 0 percent since the 2013 rate was less than 1 percent. For 2013 to 
2018, the penetration rates for FCW and CIB estimated from NCAP data were similar since they 
are often concomitant technologies. Therefore, these values were averaged for use in the 
combined AEB with FCW countermeasure. Based on the March 2016 AEB voluntary agreement, 
it was estimated that the penetration of AEB systems with FCW would peak at 2023 and be 
installed in 94.1 percent of vehicles. This estimate corresponds to FCW and AEB being applied 
to 95 percent of 99 percent of the fleet, since manufacturers of 99 percent of the fleet committed 
to making 95 percent of their vehicles compliant with the voluntary agreement. To estimate 
penetration in 2019 and later, penetration estimates were linearly interpolated from 2018 (last 
available year of NCAP data) to 2023. 

Table 69. Penetration of AEB with FCW by vehicle model year (αMY) 

Model Year αMY (%) 
≤ 2012 0.0 
2013 0.9 
2014 5.9 
2015 9.1 
2016 9.9 
2017 22.7 
2018 40.2 
2019 50.9 
2020 61.7 
2021 72.5 
2022 83.3 

2023-2030 94.1 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of FCW 
and AEB among vehicles in projection crash years was estimated in Table 70. 
 

Table 70. Penetration of FCW and AEB in projection target years (overall βTY) 

Crash Year Overall βTY (%) 
2014 0.6 
2020 14.4 
2025 44.6 
2030 72.3 

C.3 NCAP 2004 Static Stability Factor Enhancements  
The NCAP rollover rating was updated in 2003 and applied beginning in MY 2004. The rating 
was based on the risk of rollover as a function of vehicle static stability factor, which was 
calculated from wheelbase dimensions and the height of the vehicle center of gravity. In the 2004 
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NCAP update, separate rollover SSF risk curves were recalculated for tip-up and no tip-up 
scenarios using logistic regression, and a dynamic test was added. Based on the outcome of the 
dynamic test, either the tip-up or no tip-up risk curve was used to calculate the rollover risk and 
associated star value. 
 
In a 2017 report, NCSA evaluated the change in average SSF after the 2004 NCAP rollover 
rating enhancement (through model year 2013), as well as the effects of a change in SSF on 
single-vehicle and multi-vehicle crash rollover rates (Pai, 2017). Using SSF data from the NCAP 
rollover program and the sales volume of each new vehicle tested in the program, weighted 
average SSF values were calculated by vehicle type and model year. Using crash data from the 
State Data System and logistic regression, estimated rate reductions of rollovers in single-vehicle 
crashes and multi-vehicle crashes, respectively, were calculated for every 0.01 increase in SSF.  

C.3.1 SSF Target Population 
Target populations were defined in the projection model based on the target crashes analyzed by 
NCSA to calculate the effect of a change in SSF. The definitions are listed below, along with the 
NASS CDS variables used to code them in the model:  
 

• First-event rollovers in single vehicle crashes, excluding crashes involving collisions with 
pedestrians, cyclists, animals, or trains and excluding emergency vehicles and vehicles 
with trailers or attachments:  
o ACC/VEHFORMS=1 
o GV/ACCTYPE=1:12, 14:16 
o GV/ROLLOVER^=0  
o For EVENT/ACCSEQ=1, OBJCONT=31,32 
o For EVENT/ACCSEQ>1, OBJCONT^=72:77 
o GV/TOWHITCH=0 
o GV/VEHUSE^=5:8 

• Subsequent rollovers after two-vehicle, side-impact crashes, excluding crashes involving 
collisions with pedestrians, cyclists, animals, or trains and excluding emergency vehicles 
and vehicles with trailers or attachments: 
o ACC/VEHFORMS=2 
o GV/ROLLOVER^=0  
o GV/ACCTYPE=64:91 
o For EVENT/ACCSEQ=1, OBJCONT=1:11  
o For EVENT/ACCSEQ=2, OBJCONT=31,32 
o For EVENT/ACCSEQ>3, OBJCONT^=72:77 
o GV/TOWHITCH=0 
o GV/VEHUSE^=5:8 

C.3.2 SSF Effectiveness 
The effectiveness of increased rollover resistance associated with the 2004 NCAP enhancements 
was estimated based on the change in average SSF scores for NCAP-tested vehicles. This change 
in average SSF values was then used to calculate changes in rollover risk using the rollover rate 
reduction estimates from the 2017 Pai report. Single vehicle and multi-vehicle crashes were 
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analyzed separately due to differences in the interaction of ESC with SSF in these crash types, as 
well as differences in the application of effectiveness to the model.  
 
The improvements associated with these effectiveness calculations may have been motivated by 
the NCAP program or by any other factors that led to more rollover-resistant vehicle designs 
during that same period, so improvements in NCAP performance during those years do not 
define a direct benefit of NCAP but are simply a reflection of rollover risk reduction during that 
period. The influence of ESC was addressed in the effectiveness calculations, and it was not 
likely other changes in rollover resistances are addressed in any other countermeasure; therefore, 
although it was likely that some of the improvements captured may not have resulted directly 
from the NCAP enhancement, there was little risk of double-counting. In other words, although 
some of the improvements captured may not have been a direct result of the NCAP SSF update, 
they are assumed to reflect real improvements not otherwise captured by the model and are 
therefore appropriate to include in the model. 
 
Changes in SSF 
For this analysis, the change in SSF was calculated as the difference between the average MY 
2004 SSF scores and the average MY 2013 SSF scores, as shown in Table 71 (Pai, 2017).26 The 
gray column indicates values calculated for the projection model, while the white columns 
indicate values reported by Pai. MY 2013 was selected as the endpoint in order to capture the full 
change in response to the NCAP enhancements, as the SSF scores for SUVs appear to continue 
to trend upwards from 2004, throughout the entire period reported by Pai.  
 
During the period from 2004 to 2013, there were no consistent trends in SSF for minivans, full 
size vans, and passenger cars and Pai concluded that SSF did not change significantly in 
passenger vehicles other than pickup trucks and SUVs. Therefore, for the purposes of this model, 
it was estimated that there was no overall change in SSF for minivans, full size vans, and 
passenger cars so these vehicle types were not included in the effectiveness calculations in the 
following sections.   

                                                 
26 Although the average changes in SSF from MY 2004 to MY 2013 in each vehicle type reflect that some vehicle 
models changed very little and some changed much more, this average change was applied to every vehicle of a 
given type in the target population, regardless of the specific vehicle model. In effect, this countermeasure is applied 
to the model as a binary change such that it is assumed that every vehicle in the target population would either be 
associated with the average change in SSF, or no change in SSF, and the percentage of vehicles with this binary 
change was increased incrementally according to the penetration of SFF, which was estimated using the same 
methods used for penetration of other safety countermeasures, equivalent to estimating the percentage of vehicles in 
the vehicle model year that had received the change in SSF compared to the 2004 baseline. The application of this 
average change in SSF can also be thought of as an incremental change in the SSF of all vehicles over time. In other 
words, each year, the SSF of each vehicle in the target population was increased incrementally up to the total 
average change in SSF.  
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Table 71. Change in Average SSF, MY 2004 to MY 2013 

Vehicle type 
Average 
SSF MY 

2004 

Average 
SSF MY 

2013 

Change in 
SSF 

PC 1.41 1.41 0.00* 
Truck-SUV 1.14 1.19 0.05 
CUV 1.25 1.22 -0.03 
Pickups 1.21 1.18 -0.03 
Minivans 1.28 1.27 -0.01* 
Full size vans 1.09 1.07 -0.02* 

*Year-to-year trends inconsistent, overall change from 2004 to 2013 not  
significant. 

 
Calculation of Effectiveness for Single Vehicle Crashes 
For single-vehicle crashes, Pai reported that ESC had a significant interaction with SSF, i.e., that 
the effects of changes in SSF were different in vehicles equipped with ESC. Because of this 
effect, it was necessary to account for the penetration of ESC when calculating the effectiveness 
of improved SSF after the 2004 NCAP enhancement. Therefore, the unadjusted effectiveness 
was first calculated separately for vehicles with and without ESC using Equations (37) and (38), 
as shown in Table 72. The gray columns indicate values calculated for the projection model, 
while the white columns indicate values reported by Pai.  
 
 (𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ 𝐸𝐸𝑁𝑁𝑃𝑃)𝑔𝑔𝑠𝑠𝑃𝑃𝑎𝑎𝑎𝑎 =  

(𝑇𝑇𝑇𝑇𝐴𝐴2013 − 𝑇𝑇𝑇𝑇𝐴𝐴2004)
0.01

∗ 𝑈𝑈𝑤𝑤𝑠𝑠𝑟𝑟ℎ 𝐸𝐸𝑁𝑁𝑃𝑃 (37) 

 where R is the rollover rate reduction given a 0.01 increase in SSF  
 
 (𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ𝑟𝑟𝑔𝑔𝑟𝑟 𝐸𝐸𝑁𝑁𝑃𝑃)𝑔𝑔𝑠𝑠𝑃𝑃𝑎𝑎𝑎𝑎 =  

(𝑇𝑇𝑇𝑇𝐴𝐴2013 − 𝑇𝑇𝑇𝑇𝐴𝐴2004)
0.01

∗ 𝑈𝑈𝑤𝑤𝑠𝑠𝑟𝑟ℎ𝑟𝑟𝑔𝑔𝑟𝑟 𝐸𝐸𝑁𝑁𝑃𝑃 (38) 

 where R is the rollover rate reduction given a 0.01 increase in SSF. 
  

Table 72. Unadjusted SSF effectiveness estimates for single vehicle crashes, with/without ESC 

Vehicle type Change 
in SSF 

Without ESC With ESC 
Rollover rate 
reduction for 
0.01 increase 

in SSF 

Effectiveness 

Rollover rate 
reduction for 
0.01 increase 

in SSF 

Effectiveness 

Truck-SUV 0.05 
4.87% 

24.35% 
4.75% 

23.75% 
CUV -0.03 -14.61% -14.25% 
Pickups -0.03 -14.61% -14.25% 

 
The unadjusted effectiveness estimates were then adjusted for the implementation timing of the 
NCAP 2004 update, where αʹ represents the likelihood that a case occupant’s vehicle had the 
improvements associated with the NCAP update, and βTY was the predicted penetration of 
associated improvements in the targeted projection year. (Equations (39) and (40)).  
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 (𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ 𝐸𝐸𝑁𝑁𝑃𝑃)𝑃𝑃𝑎𝑎𝑎𝑎 =  (𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ 𝐸𝐸𝑁𝑁𝑃𝑃)𝑔𝑔𝑠𝑠𝑃𝑃𝑎𝑎𝑎𝑎 ∗ (𝛽𝛽𝑅𝑅𝑇𝑇,𝑁𝑁𝑃𝑃𝑅𝑅𝑃𝑃 2004 − 𝛼𝛼′𝑁𝑁𝑃𝑃𝑅𝑅𝑃𝑃 2004) (39) 

 (𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ𝑟𝑟𝑔𝑔𝑟𝑟 𝐸𝐸𝑁𝑁𝑃𝑃)𝑃𝑃𝑎𝑎𝑎𝑎 =  (𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ𝑟𝑟𝑔𝑔𝑟𝑟 𝐸𝐸𝑁𝑁𝑃𝑃)𝑔𝑔𝑠𝑠𝑃𝑃𝑎𝑎𝑎𝑎 ∗ (𝛽𝛽𝑅𝑅𝑇𝑇,𝑁𝑁𝑃𝑃𝑅𝑅𝑃𝑃 2004 − 𝛼𝛼′𝑁𝑁𝑃𝑃𝑅𝑅𝑃𝑃 2004) (40) 

 
Finally, the separate effectiveness estimates with and without ESC were combined using 
Equation (41). Because it was unknown for any given case whether the vehicle would be 
equipped with ESC in the future, the effectiveness estimates were weighted and combined using 
the penetration of ESC (βTY,ESC) which was set to the Overall βTY defined for ESC in C.1.3. In the 
absence of information to the contrary, the penetration of ESC and the reduction of SSF during 
implementation of NCAP testing were treated as independent.  
 

 
𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎 =  𝛽𝛽𝑅𝑅𝑇𝑇,𝐸𝐸𝑁𝑁𝑃𝑃(𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ 𝐸𝐸𝑁𝑁𝑃𝑃)𝑃𝑃𝑎𝑎𝑎𝑎 + (1 − 𝛽𝛽𝑅𝑅𝑇𝑇,𝐸𝐸𝑁𝑁𝑃𝑃)(𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ𝑟𝑟𝑔𝑔𝑟𝑟 𝐸𝐸𝑁𝑁𝑃𝑃)𝑃𝑃𝑎𝑎𝑎𝑎

=  �𝛽𝛽𝑅𝑅𝑇𝑇,𝐸𝐸𝑁𝑁𝑃𝑃(𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ 𝐸𝐸𝑁𝑁𝑃𝑃)𝑔𝑔𝑠𝑠𝑃𝑃𝑎𝑎𝑎𝑎 + (1 − 𝛽𝛽 𝑅𝑅𝑇𝑇,𝐸𝐸𝑁𝑁𝑃𝑃)(𝐸𝐸𝑤𝑤𝑠𝑠𝑟𝑟ℎ𝑟𝑟𝑔𝑔𝑟𝑟 𝐸𝐸𝑁𝑁𝑃𝑃)𝑔𝑔𝑠𝑠𝑃𝑃𝑎𝑎𝑎𝑎�
∗ (𝛽𝛽𝑁𝑁𝑃𝑃𝑅𝑅𝑃𝑃 2004 − 𝛼𝛼′𝑁𝑁𝑃𝑃𝑅𝑅𝑃𝑃 2004) 

(41) 

 
Application of Effectiveness in Single-Vehicle Crashes 
For single vehicle crashes, the effectiveness of SSF was defined as a percentage of rollover 
crashes that would be completely prevented. The effectiveness estimates resulting from Equation 
(41) were applied to all cases in the target population, resulting in the reduction of the case 
weight of every case in the target population. In cases of negative effectiveness, the result was an 
increase of the case weight of any case in the target population.  
 
Calculation of Effectiveness for Multi-Vehicle Crashes  
For multi-vehicle crashes, Pai reported that ESC did not have a significant interaction with SSF 
(Pai, 2017). Therefore, it was not necessary to calculate separate effectiveness values for vehicles 
with and without ESC. Pai reported that roadway condition (wet versus dry) had a significant 
interaction with SSF for passenger cars, but not for LTVs, in multi-vehicle crashes. However, 
because there was no change in average SSF for passenger cars over the time period of interest, it 
was not necessary to account for the effect of roadway condition. Therefore, only one unadjusted 
effectiveness value was calculated for each vehicle type, as shown in Equation (42) and Table 
73. The gray columns indicate values calculated for the projection model, while the white 
columns indicate values reported by Pai.  
 
 𝐸𝐸 =  

(𝑇𝑇𝑇𝑇𝐴𝐴2013 − 𝑇𝑇𝑇𝑇𝐴𝐴2004)
0.01

∗ 𝑈𝑈 (42) 

 where R is the rollover rate reduction given a 0.01 increase in SSF.  
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Table 73. Unadjusted SSF effectiveness estimates for multi-vehicle crashes 

Vehicle type Change 
in SSF 

Rollover rate 
reduction for 0.01 

increase in SSF 
Effectiveness 

Truck-SUV 0.05 
7.47% 

37.35% 
CUV -0.03 -22.41% 
Pickups -0.03 -22.41% 

 
Application of Effectiveness in Multi-Vehicle Crashes 
For multi-vehicle crashes, the effectiveness of SSF was defined as a reduction in subsequent 
rollovers, given an initial side impact crash. In other words, only the rollover was prevented, not 
the entire crash. Therefore, unlike with single-vehicle crashes, the case weight of the entire case 
was not reduced, but rather the rollover and the injuries caused by the rollover were deleted from 
a percentage of the cases in the target population. However, it was not possible to determine 
which injuries were associated specifically with the rollover, versus other events in the crash. 
Therefore, for the purposes of this analysis, any roof-contact or ejection associated injury was 
treated as if it were related to the rollover. These injuries were identified based on injury source 
using the following NASS CDS variables: 
 

• Roof-contact injuries: OI/INJSOU = (3, 20, 201: 208, 410) 
• Ejection injuries: OI/INJSOU = (451: 454, 551, 598, 599) 

 
In the case of positive effectiveness resulting from increases in SSF, a pseudo-case was created 
for each case in the target population with all injuries associated with either roof contact or 
ejection deleted. The weight of this pseudo-case was determined by the SSF effectiveness, as 
shown in Table 74.  

Table 74. Pseudo-cases for multi-vehicle crashes with positive effectiveness  

Rollover Injury Case Weight Multiplier 
Yes (no change) No change 1 − 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) 

No (rollover eliminated) Roof-contact and ejection 
injuries deleted 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) 

 
In the case of negative effectiveness resulting from decreased SSF, some side impact cases that 
did not originally result in rollovers needed to be adjusted to include a subsequent rollover. In 
order to code this added rollover into the model, pseudo-cases were created with a change in the 
rollover status of a case and the addition of roof contact and ejection related injuries. Because 
side impacts at very low speeds are expected to be less likely to lead to a subsequent rollover, 
only side impacts with lateral delta V greater than or equal to 15 km/h were adjusted to include a 
rollover. The resulting target population for the side impact cases to be adjusted to include 
subsequent rollovers as a result of negative effectiveness was defined using NASS CDS 
variables as follows on the next page:  
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• ACC/VEHFORMS=2, 
• GV/ROLLOVER=0, 
• GV/ACCTYPE=64:91, 
• For EVENT/ACCSEQ=1, OBJCONT=1:11, 
• For EVENT/ACCSEQ>2, OBJCONT^=72:77, 
• GV/TOWHITCH=0, 
• GV/VEHUSE^=5:8, and 
• GV/DVLAT>=15. 

 
The proportion of pseudo-cases for which roof-contact and/or ejection related injuries were 
added was based on the likelihood of the occupant being ejected and the proportion of occupants 
in rollovers with roof-contact related injuries. Based on data that 20 percent of unbelted 
occupants are completely ejected in a rollover, while only 0.03 percent of belted occupants are 
completely ejected (Funk et al., 2012), belted occupants were treated separately from unbelted 
occupants.  
 
Because the ejection rate was so low for belted occupants, no ejection-related injuries were 
added to belted occupant cases. Additionally, not all occupants in a rollover will necessarily 
sustain a roof-contact injury; an analysis of the retrospective baseline dataset determined that 
approximately 21 percent of AIS 2+ injured occupants in side impact crashes with a subsequent 
rollover had a roof-contact related injury. Based on this data, it was approximated that 21 percent 
of belted occupants would sustain a roof-contact injury if a rollover occurred. Therefore, as 
shown in Table 75, three pseudo-cases were created for each belted occupant in the target 
population:  
 

1) Unchanged pseudo-case,  
2) Rollover pseudo-case with no change in injury, and 
3) Rollover pseudo-case with a roof-contact injury added. 
 

For unbelted rollover occupants, it was approximated that the 20 percent expected to be 
completely ejected (Funk et al., 2012) would sustain ejection related injuries. As with belted 
occupants, it was also estimated that 21 percent of unbelted occupants would sustain a roof-
contact injury if a rollover occurred. Therefore, as shown in Table 75, five pseudo-cases were 
created for each unbelted occupant in the target population:  
 

1) Unchanged pseudo-case,  
2) Rollover pseudo-case with no change in injury or ejection status,  
3) Rollover pseudo-case with a roof-contact injury but no change in ejection status,  
4) Rollover pseudo-case with ejection injuries, but no roof-contact injury, and 
5) Rollover pseudo-case with both roof-contact and ejection injuries. 
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Table 75. Pseudo-cases for multi-vehicle crashes with negative effectiveness  

Seat 
Belt 
Use 

Rollover Ejection Injury Case Weight 
Multiplier* 

Belted 
No No No change 1 − 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) 
Yes No No change 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) ∗ 0.79 
Yes No Roof-contact head injury added 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) ∗ 0.21 

Unbelted 

No No No change 1 − 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) 
Yes No No change 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) ∗ 0.80 ∗ 0.79 
Yes  No Roof-contact head injury added 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) ∗ 0.80 ∗ 0.21 

Yes Yes** Ejection head and thorax injuries 
added 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) ∗ 0.20 ∗ 0.79 

Yes Yes** Roof-contact head injury, ejection 
head and thorax injuries added 𝐸𝐸𝑃𝑃𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑊𝑊) ∗ 0.20 ∗ 0.21 

* The absolute value of effectiveness should be used. 
** Complete ejection. 

Based on a review of the baseline retrospective dataset, loss of consciousness injuries are among 
the most frequent AIS 2+ roof-contact related injuries in multi-vehicle rollover crashes. 
Additionally, subarachnoid hemorrhages and multiple rib fracture injuries with 
hemo/pneumothorax are among the most frequent AIS 2+ ejection related injuries in multi-
vehicle rollover crashes. Therefore, the following AIS-coded injuries were identified as typical 
and were added to the pseudo-cases to represent roof-contact and ejection related injuries: 
 

• Roof-contact injury: 160414.2  
• Ejection injuries: 140684.3, 450211.3 

 
It is acknowledged that addition of typical rollover injuries to cases with negative effectiveness 
relies on substantial approximations and generalizations. However, the alternative method 
considered, which involved downweighting cases with side impact only and upweighting cases 
with side impact and rollover, was expected to lead to an unrealistic increase in crash severity 
since overall crash severity was expected to be worse in side impacts associated with rollovers 
than in side impacts that do not lead to rollovers.  

C.3.3 Relationship Between SSF and Other Countermeasures  
In the case-by-case method (see Section 2.6.3), each countermeasure was applied to every 
individual case in its target population based on case variables. The rollover pseudo-cases that 
result from application of the SSF countermeasure may be affected by other countermeasures in 
the model. Therefore, the SSF countermeasure must be applied prior to any other 
countermeasures in the projection model for which the addition of a rollover (with and without 
ejection) in the SSF pseudo-cases would move the case into, or out of, the target population. In 
Table 76, all other countermeasures for which there was a potential overlap in target population 
with SSF were evaluated to determine if application of SSF would move cases either into, or out 
of, the target population for these other countermeasures. Countermeasures whose target 
populations do not overlap with SSFs are not included in this table. For example, only front-to-
rear crashes are included in the target population for AEB with FCW, while only side impacts 
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with or without subsequent rollovers are included in the multi-vehicle target population for SSF. 
Therefore, there are no conditions in which FCW will be applied to the pseudo-cases created by 
the application of SSF, so the two countermeasures can be applied in any order without regard to 
the effects of FCW on SSF pseudo-cases. As summarized in Table 76, cases would be expected 
to have the same target population status for FMVSS No. 126 (ESC) before and after application 
of SSF so that this countermeasure can be applied before or after the SSF countermeasure, 
without regard for the addition of rollover to SSF pseudo-cases. In contrast, addition of rollover 
injuries to an SSF pseudo-case could put it into the target population for the FMVSS No. 216 
(Roof Strength) or FMVSS No. 226 (Ejection Mitigation) countermeasures when its parent case 
without rollover was not initially in the target population. Therefore, SSF needs to be applied in 
the model prior to FMVSS No. 216 and FMVSS No. 226. Similarly, the addition of ejection 
injuries to an SSF pseudo-case could exclude it from the target population for the FMVSS No. 
214 and NCAP 2011 countermeasures when its parent case without ejection was initially 
included in the target population. Therefore, SSF needs to be applied in the model prior to 
FMVSS No. 214 and NCAP 2011.  
 
Because it was not feasible to adjust all variables associated with adding or removing a rollover 
or ejection from a case in the model (such as ejection route or number of rolls), it was necessary 
to individually consider which pseudo-cases resulting from the application of SSF to multi-
vehicle crashes should be included in the target populations of FMVSS No. 216, FMVSS No. 
226, FMVSS No. 214, and NCAP 2011. Table 76 summarizes the rationale used to determine 
which cases would be added to the target populations for these other countermeasures.   
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Table 76. Application of target population criteria for other countermeasures to SSF 
pseudo-cases 

Countermeasure 

Potential 
overlap in 

target 
population 
with SSF? 

Target population status for SSF pseudo-cases 

FMVSS No. 126 
(ESC)  

Yes – Culpable 
multiple vehicle 
only (Appendix 
C.1.1)  

Rollover and ejection status have no impact on the culpable 
multi-vehicle target population.  
Conclusion: Each SSF pseudo-case would have the same 
FMVSS No. 126 target population status as its parent case 
before application of SSF. 

FMVSS No. 214 
(Side Impact) 

Yes – MDB test 
target population 
only (Appendix 
E.3.1) 

First-event rollover cases are excluded from the FMVSS No. 
214 target population, but subsequent rollovers are not 
excluded from the FMVSS No. 214 target population. Since 
only subsequent rollovers are affected by the SSF 
countermeasure, the pseudo-rollover status does not need to 
be considered in the application of FMVSS No. 214.  
However, completely ejected occupants are excluded from 
the FMVSS No. 214 target population, regardless of rollover 
status. Cases with pseudo-ejection added by the application 
of SSF will be similarly excluded. Therefore, a case in which 
a pseudo-rollover with ejection was added would be excluded 
(while its parent case may not have been). Cases in which an 
ejection was deleted by the application of SSF will not be 
excluded from the 214 target population based on ejection 
status (but they could be excluded based another target 
population limitation). 
Conclusion: An SSF pseudo-case with ejection could have 
different FMVSS No. 214 target population status than its 
parent case.  
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Countermeasure 

Potential 
overlap in 

target 
population 
with SSF? 

Target population status for SSF pseudo-cases 

FMVSS No. 216 
 (Roof Strength) 

Yes (Appendix 
E.4.1)  

The FMVSS No. 216 target population includes roof-
involved rollovers, defined as all rollovers except ¼ turn and 
unknown number of turns. The FMVSS No. 216 target 
population was limited to injuries from a vertically intruding 
roof component. Therefore, cases with a pseudo-rollover and 
a pseudo-roof-contact head injury added by the application of 
SSF will be assigned to fall in the FMVSS No. 216 target 
population. However, cases with a pseudo-rollover and no 
added roof-contact head injury will not be assigned to fall in 
the FMVSS No. 216 target population. 
An analysis of the baseline retrospective dataset determined 
that the average roof intrusion experienced by occupants in 
side impact crashes with a subsequent rollover was 
approximately 14 cm. Based on this data, it was estimated 
that occupants for which a pseudo-roof-contact head injury 
was added experienced vertical intrusion of a roof component 
equal to 14 cm.  
Conclusion: An SSF pseudo-case with roof-contact head 
injuries could have different FMVSS No. 216 target 
population status than its parent case. 

FMVSS No. 226 
(Ejection 
Mitigation) 

Yes (Appendix 
E.6.1) 

Pseudo-ejected occupants will be assigned the following 
characteristics for the FMVSS No. 226 target population 
definition. As with other cases with unknown variables in the 
FMVSS No. 226 target population, these cases will be 
assigned a percentage that corresponds to the distribution of 
NASS CDS ejection variables among known cases.  

- EJECTION=1 (complete ejection)  
- EJCTAREA=99 (unknown)  
- EJCTMED=U (unknown)  

Multi-vehicle crashes in which a pseudo-rollover has been 
added by the application of SSF will be assigned to the “side 
impact with subsequent rollover” subpopulation within the 
FMVSS No. 226 target population. 
Multi-vehicle crashes in which the rollover has been deleted 
by the application of SSF would be coded to fall into the 
“side impact without rollover” subpopulation within the 
FMVSS No. 226 target population. However, it was assumed 
that if the parent case had an ejected occupant, the ejection 
would be deleted when the rollover was deleted. Therefore, 
these cases would be excluded from the FMVSS No. 226 
global target population based on ejection status.  
Conclusion: An SSF pseudo-case could have different 
FMVSS No. 226 target population status than its parent case. 
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Countermeasure 

Potential 
overlap in 

target 
population 
with SSF? 

Target population status for SSF pseudo-cases 

NCAP 2011 (Side 
Impact 

Yes – MDB test 
target population 
only (Appendix 
E.5.1) 

First-event rollover cases are excluded from the NCAP 2011 
side impact target population, but subsequent rollovers are 
not excluded from the NCAP 2011 side impact target 
population. Since the SSF countermeasure only affects 
rollover injuries and not injuries from initial side impacts, the 
pseudo-rollover status does not need to be considered in the 
application of NCAP 2011 side impact.  
However, completely ejected occupants are excluded from 
the NCAP 2011 side impact target population, regardless of 
rollover status. Cases with pseudo-ejection added by the 
application of SSF will be similarly excluded. Therefore, a 
case in which a pseudo-rollover with ejection was added 
would be excluded (while its parent case may not have been). 
Cases in which an ejection was deleted by the application of 
SSF will not be excluded from the NCAP 2011 target 
population based on ejection status (but they could be 
excluded based another target population limitation). 
Conclusion: Each SSF pseudo-case with ejection could have 
different NCAP 2011 side impact target population status 
than its parent case.  

 

C.3.4 SSF Fleet Penetration 
Vehicle improvements in response to the NCAP enhancement are assumed to have occurred 
incrementally between 2004 and 2013. While it was not assumed that all improvements in SSF 
and rollover risk were motivated by the NCAP program, it was assumed that rollover risk 
improvements that occurred during the period analyzed by Pai occurred incrementally between 
2004 and 2013. Therefore, penetration of the NCAP 2004 updates was defined as the percentage 
of vehicles that improved from 2004 levels to 2013 levels. Based on Pai’s statement that the 
NCAP rollover resistance program attempted to cover at least 80 percent of passenger vehicles in 
the market between 2004 and 2013, it was estimated that the improvements in tested vehicles 
reflect performance improvements in about 80 percent of vehicles in the fleet. The resulting 
penetration estimates by model year are shown in Table 77.  

Table 77. Penetration of SSF by vehicle model year (αMY) 

Model Year αMY (%) 
≤ 2004 0.0 
2005 8.9 
2006 17.8 
2007 26.7 
2008 35.6 
2009 44.4 
2010 53.3 
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Model Year αMY (%) 
2011 62.2 
2012 71.1 

2013-2030 80.0 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of SSF 
among vehicles in projection crash years was estimated in Table 78. 

Table 78. Penetration of SSF in projection target years (overall βTY) 

Crash 
Year 

Overall βTY (%) 

2014 47.8 
2020 66.8 
2025 75.7 
2030 79.0 

C.4 Blind Spot Detection 
Blind spot detection systems are intended to warn the driver when a vehicle is in their blind spot 
by using cameras or sensors to monitor areas on the side of a vehicle. BSD systems are expected 
to be most effective at preventing lane change crashes. Although there is no specific FMVSS for 
BSD systems, these systems were available from most manufacturers by the end of the baseline 
retrospective data period (2015) and are predicted to become increasingly common in future 
model years (Highway Loss Data Institute, 2017).  

C.4.1 BSD Target Population  
The target population for BSD was generally expected to be limited to lane change crashes 
where the vehicles were travelling in the same direction and the movement of one vehicle into 
the travel lane of another was the primary cause of the crash. Target populations were defined 
based on the evaluation of the effects of blind spot monitoring systems performed by IIHS 
(Cicchino, 2017b). The target population definitions and the NASS CDS variables used to code 
them in the model were as follows. 
 
Crash type: Multiple vehicle crashes where the subject vehicle or the vehicle contacted by the 
subject vehicle was changing lanes or merging prior to the crash, coded using the following 
NASS CDS variables: 
 

• VEHFORMS>=2 AND 
• PREMOVE in (15,16)  

 
Exclusions: Crashes in which the lane-changing vehicle rear-ended another vehicle and/or the 
two vehicles involved were initially traveling in opposite or perpendicular directions were not 
considered relevant for BSD systems. This exclusion was coded using the following NASS CDS 
variable: 
 

• ACCTYPE in (20:43, 50:67, 76:91) 
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While BSD systems are likely inactive or ineffective below certain traveling speeds and in some 
weather conditions, the Cicchino analysis did not include any restrictions on speed or weather. 
Thus, the resulting effectiveness values apply to a broad target population of all relevant lane-
change crashes (regardless of speed or weather conditions). This target population does not 
include crashes in which the lane-change vehicle encroaches into the blind-spot vehicle’s lane, 
causing the blind-spot vehicle to crash without impacting the lane-change vehicle. These types of 
crashes would likely benefit from BSD systems but cannot be identified in the projection model.  
 
Case occupants in a crash in the target population could be affected by implementation of BSD 
technology whether they are in the vehicle making a lane change or in the vehicle in the blind 
spot since BSD in the lane-change vehicle has the potential to prevent the crash for both 
vehicles, regardless of which vehicle the case occupant was in. However, the vehicle changing 
lanes and the vehicle in the blind spot need to be distinguished in order to apply the appropriate 
likelihood of BSD technology to the lane-changing vehicle, i.e., penetration. NASS CDS 
variables coded to distinguish between the two vehicles involved in a crash in the target 
population are shown below.  
 
Lane-change vehicle: This vehicle was the one that would need to have BSD to have an effect 
on case outcome in the model: 
 

• ACCTYPE in (44:49, 70:75) and PREEVENT in (10:13, 15:16) OR 
• ACCTYPE in (44:49, 70:75) and PREEVENT of other vehicle in (60,61,63) 

 
Blind-spot vehicle: This vehicle was the one that would not need to have BSD: 
 

• ACCTYPE in (44:49, 70:75) and PREEVENT of other vehicle in (10:13, 15:16) OR  
• ACCTYPE in (44:49, 70:75) and PREEVENT in (60,61,63)) 

C.4.2 BSD Effectiveness  
Cicchino evaluated the effects of blind spot monitoring systems using Poisson regression to 
compare police-reported lane-change crash involvement rates between vehicles with BSD 
systems and the same vehicle models without the optional BSD systems (Cicchino, 2017b). State 
crash data was used for that analysis and was linked to insurance exposure data using vehicle 
identification numbers. The analysis controlled for a number of factors, including vehicle model 
year, the presence of other relevant crash avoidance systems, and driver demographics. A variety 
of vehicle models and manufacturers were included in the analysis, so the results represented the 
average effectiveness for a range of BSD systems, rather than the effectiveness of any specific 
system, which was likely to depend on the alert modality (means of alert) and the detection 
range, among other factors.  
 
Cicchino reported that BSD systems reduced police-reported lane-change crash involvement 
rates in crashes of all severities by 14 percent on average and in injury crashes by 23 percent on 
average. To apply these results to injury crashes and non-injury crashes in the projection model 
without double-counting benefits, a non-injury effectiveness was estimated using Equations (43) 
and (44). The resulting effectiveness is shown in Table 79. In the projection model, injury 
crashes were defined as any crash with at least one injured occupant, and effectiveness was a 
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measure of the percentage of cases in the given target population that were completely 
prevented. 
  

 𝐸𝐸𝑃𝑃𝑓𝑓𝑓𝑓 =
𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎 + 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑁𝑁𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎

𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎 + 𝑁𝑁𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎
 (43) 

 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 =
𝐸𝐸𝑃𝑃𝑓𝑓𝑓𝑓 ∗ �𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎 + 𝑁𝑁𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎� − 𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎

𝑁𝑁𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎
 (44) 

 

where: 
Eall is the effectiveness estimated by Cicchino across all crash severities, 

Einj is the effectiveness estimated by Cicchino for injury crashes, 
Enoninj is the unknown effectiveness value for non-injury crashes, and 

Ninj and Nnoninj are the number of injury and non-injury lane-change crashes in 
the Cicchino dataset, respectively. 

 

 
Table 79. Calculation of effectiveness for non-injury crashes 

From Source Data on Effectiveness (Cicchino, 2017b) Calculated With 
Equation (44) 

Eall Einj Ninj Nnon-inj Enon-inj 

14% 23% 568 4052 12.7% 
 
IIHS reported in 2018 that 99 percent of BSD systems were enabled (Reagan et al., 2018). The 1 
percent of systems that were disabled were already accounted for in the effectiveness reported by 
Cicchino, because the analysis compared real-world crash involvement rates for vehicles with 
and without the technology installed rather than for vehicles with and without the technology 
enabled. Therefore, no adjustment to Cicchino’s estimates were required to account for disabled 
systems.  

C.4.3 BSD Fleet Penetration 
For BSD, adjusted effectiveness for occupants in both the lane-change vehicle and the blind-spot 
vehicle was calculated based on the likelihood that the lane-change vehicle would be equipped 
with BSD technology. Therefore, all penetration estimates for this countermeasure were based on 
the model year of the lane-change vehicle.  
 
The following sources were used to estimate BSD penetration: 
 

• Data collected by the NCAP program on the installation rate of BSD technology (NHTSA, 
2018b), and 

• Predicted future installations (Highway Loss Data Institute, 2017). 
 
For 2013 through 2018, model year penetration (αMY) in Table 80 was estimated using the BSD 
penetration rates estimated from NCAP program data (NHTSA, 2018b). For the purpose of 
estimation in the projection model, it was estimated that penetration of BSD by model year 
(αMY) prior to 2013 was near 0 percent since the 2013 rate was 3.2 percent.  
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Table 80. Penetration of BSD by vehicle model year (αMY) 

Model Year αMY (%) 
≤ 2012 0.0 
2013 3.2 
2014 9.0 
2015 14.6 
2016 17.0 
2017 34.1 
2018 30.7 

 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of BSD 
among vehicles in 2014 was estimated in Table 81. For projection years (2020-2030), overall βTY 
for this countermeasure was approximated by the expected fleet-wide penetration predicted by 
the Highway Loss Data Institute (2017) in the targeted projected years. 

Table 81. Penetration of BSD in projection target years (overall βTY) 

Crash Year Overall βTY (%) 
2014 1.1 
2020 23.0 
2025 51.0 
2030 72.0 

C.5 Lane Departure Warning  
Lane departure warning systems use cameras to monitor lane markings and are intended to alert 
the driver if they drift out of the lane without a turn signal. LDW systems are expected to be 
most effective at preventing road departure, sideswipe, and opposite direction crashes. LDW is 
one of the advanced crash avoidance technologies recommended by NHTSA through NCAP, 
which tests for the presence of LDW using a pass/fail test-track confirmation test.  
 
Because LDW systems are still relatively rare in the on-road fleet, most previous studies 
evaluating LDW effectiveness have been field operation tests and simulations using crash data 
(Wilson et al., 2007; Sayer et al., 2011; Kusano et al., 2014; Harper et al., 2016; LeBlanc et al., 
2017). The projection model relies on LDW effectiveness results published by IIHS based on 
police-reported crash involvement rates for vehicles with LDW systems and the same vehicle 
models without the optional LDW systems. These real-world results were relatively consistent 
with previous field operation tests and simulation studies. 

C.5.1 LDW Target Population  
The target population for lane departure warning is generally expected to be limited to lane and 
road departure crashes where the movement of one vehicle out of its travel lane is the primary 
cause of the crash. The target population in the projection model was defined based on the 
evaluation of the effects of LDW systems performed by IIHS (Cicchino, 2017c). The global 
target population definition, and the NASS CDS variables used to code it in the projection 
model, is based on crash type, as listed below. 
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Crash type: Single-vehicle, head-on, and sideswipe crashes, defined using the following NASS 
CDS variable. 
 

• ACCTYPE in (1:16, 44:49, 50:67) 
 
Additional exclusions from the target population were based on the target populations used in the 
studies relied on for effectiveness estimates for the LDW countermeasures. The target 
populations exclusions were defined in the model as follows. 
 
Exclusions (and NASS CDS variables used to code them):  
 

• Either crash-involved vehicle was changing lanes, merging, passing, turning, or backing 
prior to the crash: PREMOVE or PREMOVE2 in (6, 10:13, 15:17) 

• Either vehicle was traveling on a road with speed limit under 40 mph: SPLIMIT<64 km/h 
• Either vehicle was traveling on a road that was covered with snow or ice:  

o Pre-2009: SURCOND in (3:4)  
o 2009+: SURCOND in (3:5)  

• Head-on crashes where vehicles were travelling in the same or perpendicular directions 
prior to the crash: excluded based on ACCTYPE codes used in crash type definition 

• Two-vehicle sideswipe crashes where the vehicles were initially travelling on 
perpendicular paths: excluded based on ACCTYPE codes used in crash type definition 

• Single-vehicle crashes between a vehicle and a pedestrian or bicyclist: excluded based on 
ACCTYPE codes used in the crash type definition 

 
While LDW systems are likely inactive below certain travel speeds, the Cicchino analysis does 
not include any minimum restrictions on speed. Thus, the resulting effectiveness values apply to 
a broad target population of all relevant single-vehicle, head-on, and sideswipe crashes, limited 
only by the exclusions above. 
 
For two-vehicle crashes in the target population, case occupants could be affected by 
implementation of LDW technology whether they are in the vehicle leaving its lane or in the 
struck vehicle since LDW in the lane-exiting vehicle has the potential to prevent the crash for 
both vehicles, regardless of which vehicle the case occupant was in. However, the lane-exiting 
vehicle and the struck vehicle need to be distinguished in order to apply the appropriate 
likelihood of LDW detection to the lane-exiting vehicle, i.e., penetration. The NASS CDS 
variables coded to distinguish between the two vehicles involved in a crash in the target 
population are shown below. 
 
Lane-exiting vehicle: this vehicle is the one that would need to have LDW in order to have an 
effect on the crash outcome: 
 

• ACCTYPE in (44:49, 50:67) and PREEVENT in (10:13) OR 
• ACCTYPE in (44:49, 50:67) and PREEVENT of other vehicle in (51:54, 60:63, 78) 
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Struck vehicle: this vehicle is the one that would not need to have LDW: 
 

• ACCTYPE in (44:49, 50:67) and PREEVENT of other vehicle in (10:13) OR  
• ACCTYPE in (44:49, 50:67) and PREEVENT in (51:54, 60:63, 78) 

C.5.2 LDW Effectiveness  
In 2014, UMTRI conducted a review of the current research on LDW effectiveness and reported 
a crash reduction in the target population of 6 percent to 34 percent, which was relatively 
consistent with simulation studies available at the time (Blower, 2014). NHTSA conducted field 
operation tests on road departure crash warning systems (Wilson et al., 2007) and integrated 
crash warning systems (Sayer et al., 2011). These studies reported an effectiveness of 7 percent 
to 57 percent and 6 percent to 29 percent, respectively; however, each study evaluated multiple 
technologies so these effectiveness results cannot be attributed to LDW alone.  
 
More recently, Harper and colleagues estimated the benefits of LDW using an upper and lower 
bound (Harper et al., 2016). The upper bound was defined using the assumption that the 
technology would be 100 percent effective at preventing relevant crashes, and the lower bound 
was defined using data on the current technology effectiveness from IIHS/HLDI data, by 
comparing claim frequency among vehicles with LDW to those without the technology. 
However, using the upper bound of 100 percent effectiveness would be unrealistically optimistic 
for the projection model, and the application of the lower bound requires assumptions that the 
distribution of insurance collision claims was similar to the distribution of crashes in NASS and 
that all changes in collision claim frequency were caused by the prevention of target population 
crashes.  
 
Kusano and Gabler have published multiple benefit estimate models that use crash data to 
simulate the effectiveness of LDW, resulting in estimates of 11 percent to 29 percent of target 
crashes prevented, depending on the system parameters used (Kusano et al., 2014; Kusano et al., 
2014; Kusano & Gabler 2015). The model in their 2015 paper used results from NCAP 
confirmation tests to simulate the effectiveness of production LDW systems and reported an 
effectiveness of 15.4 percent. After adjusting for the lower operating speed threshold of LDW 
systems, cases that were manually excluded in the Kusano and Gabler (2015) analysis, and the 
percentage of LDW systems that are disabled by drivers, this estimate equated to an 
effectiveness of approximately 9 percent.  
 
UMTRI has also published effectiveness values based on simulations of LDW and lane keeping 
support systems, which range from 6.1 percent to 8.7 percent for LDW alone, depending on the 
driver response inputs used (LeBlanc et al., 2017).  
 
The projection model uses LDW effectiveness results published by IIHS based on real-world 
outcome rather than on experimental or simulation results (Cicchino, 2017c). Cicchino used 
Poisson regression to compare police-reported target crash involvement rates between vehicles 
with LDW systems and the same vehicle models without the optional LDW systems. State crash 
data was used for this analysis and was linked to insurance exposure data using vehicle 
identification numbers. The analysis controlled for a number of factors, including vehicle model 
year, the presence of other relevant crash avoidance systems, and driver demographics. The 
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resulting effectiveness estimates ranged from 11 percent to 21 percent and were relatively 
consistent with the NHTSA field operation tests and other simulation studies.  
 
Cicchino reported that LDW systems reduced police-reported relevant crash involvement rates in 
crashes of all severities by 11 percent on average and in injury crashes by 21 percent on average 
(Cicchino, 2017c). To apply these results to injury crashes and non-injury crashes in the 
projection model without double-counting benefits, a non-injury effectiveness was estimated 
using Equations (45) and (46). The resulting effectiveness is shown in Table 82. In the projection 
model, injury crashes were defined as any crash with at least one injured occupant and 
effectiveness was a measure of the percentage of cases in the target population that would be 
prevented. 
 

 𝐸𝐸𝑃𝑃𝑓𝑓𝑓𝑓 =
𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎 + 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑁𝑁𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎

𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎 + 𝑁𝑁𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎
 (45) 

 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 =
𝐸𝐸𝑃𝑃𝑓𝑓𝑓𝑓 ∗ �𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎 + 𝑁𝑁𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎� − 𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎

𝑁𝑁𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎
 (46) 

where: 
Eall is the effectiveness estimated by Cicchino across all crash severities, 

Einj is the effectiveness estimated by Cicchino for injury crashes, and Enoninj is the unknown effectiveness 
value for non-injury crashes, 

Ninj and Nnoninj are the number of injury and non-injury lane-change crashes in the Cicchino dataset, 
respectively. 

 
Table 82. Calculation of effectiveness for non-injury crashes 

From Source Data on Effectiveness (Cicchino, 2017c) Calculated With 
Equation (46) 

Eall Einj Ninj Nnon-inj Enon-inj 

11% 21% 986 4447 8.8% 
 
In a study of vehicles taken to dealerships for service, IIHS reported that 45 percent of lane 
maintenance warning systems were disabled (Reagan et al., 2018). A field study of GM LDW 
systems showed that systems with an auditory warning were turned off 71 percent of the time 
and haptic warning systems were only turned off 38 percent of the time (Flannagan et al., 2016). 
Although disabled systems certainly affect effectiveness, the proportion of systems that are 
disabled was already accounted for in the effectiveness reported by Cicchino (2017c), because 
the analysis compares real-world crash involvement rates for vehicles with and without the 
technology installed rather than for vehicles with and without the technology enabled. Therefore, 
no further adjustment was required to account for consumer disabling of systems. 

C.5.3 LDW Fleet Penetration  
For LDW, adjusted effectiveness for occupants in the lane-exiting vehicle, as well as in any other 
vehicles in the crash, was calculated based on the likelihood that the lane-exiting vehicle would 
be equipped with LDW technology in the crash year and the projected target year. Therefore, all 
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penetration estimates for this countermeasure were based on the model year of the lane-exiting 
vehicle.  
 
The following sources were used to estimate LDW penetration: 
 

• Data collected by the NCAP program on the installation rate of LDW technology (NHTSA, 
2018b) 

• Predicted future installations (Highway Loss Data Institute, 2017) 
 
For purposes of estimation in the projection model, it was estimated that penetration of LDW in 
model years (αMY) prior to 2013 was 0 percent since the 2013 rate was 0.2 percent. For 2013 
through 2018, model year penetration (Table 83) was determined using the LDW installation 
rates estimated using data collected by the NCAP program (NHTSA, 2018b). 

Table 83. Penetration of LDW by vehicle model year (αMY) 

Model Year αMY (%) 
≤ 2012 0.0 
2013 0.2 
2014 5.6 
2015 10.4 
2016 10.2 
2017 27.3 
2018 30.1 

 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of LDW 
among vehicles in 2014 was estimated in Table 84. For projection years (2020 to 2030), overall 
βTY for this countermeasure was approximated by the expected fleet-wide penetration predicted 
by the Highway Loss Data Institute (Highway Loss Data Institute, 2017) in the targeted 
projected years. 

Table 84. Penetration of LDW in projection target years (Overall βTY) 

Crash Year βTY (%) 
2014 0.5 
2020 18.0 
2025 46.0 
2030 69.0 

C.6 FMVSS No. 138 Tire Pressure Monitoring Systems 
FMVSS No. 138 requires a TPMS to be installed in all new passenger cars, trucks, and buses 
with a gross vehicle weight rating of 10,000 pounds or less. The final rule requires that the driver 
be given a warning when the tire pressure is 25 percent or more below the recommended cold 
inflation tire pressure (placard pressure) for at least one tire and that a TPMS malfunction 
indicator be installed. FMVSS No. 138 was expected to reduce the prevalence of underinflated 
tires, which in turn was expected to have an influence on skidding and loss of control crashes, 
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crashes resulting from flat tires and blowouts, and crashes that involve braking because low tire 
pressure can result in increased stopping distance (NHTSA, 2005).  
 
TPMS was expected to reduce the number of skidding and loss of control crashes, as well as 
crashes resulting from flat tires and blowouts. However, TPMS was likely to not only reduce the 
number of braking-involved crashes, but also reduce the severity of the remaining (not 
prevented) braking-involved crashes. Therefore, FMVSS No. 138 will be implemented in the 
model as both a crash avoidance and a crash mitigation countermeasure, i.e., it will reduce the 
case weight of crashes in the target population and pseudo-cases with reduced injuries will be 
created for a subset of these crashes. This appendix concerns the crash avoidance portion of the 
effects of TPMS. The crash mitigation portion of FMVSS No. 138 is addressed in Appendix D.2.  
 
Model parameters for this countermeasure relied on data from the Final Regulatory Impact 
Analysis for FMVSS No. 138 (NHTSA, 2005), as well as the subsequent evaluation of the 
effectiveness of the rule (Sivinski, 2012).  

C.6.1 TPMS Target Population 
The FMVSS No. 138 FRIA (NHTSA, 2005) identified the following target populations: skidding 
and loss of control crashes, crashes resulting from flat tires and blowouts, and braking-involved 
crashes. Based on the variables available in NASS CDS, the following categories of target 
population were defined for application to the model: 
 

• Loss of control crashes: PREEVENT=2:9 for any vehicle in crash.27  
• Crashes resulting from flat tires and blowouts: PREEVENT=1 for any vehicle in crash.  
• Braking-involved crashes:28  

o LTVs: Crashes in which at least one LTV applied brakes and skidded:29 
MANEUVER=2:4, 8:9 and PREISTAB=2:4 for any LTV in crash.  

o Passenger Cars: Crashes in which at least one passenger car applied brakes and 
skidded, excluding cases that were LTV braking-involved crashes: 
MANEUVER=2:4, 8:9 and PREISTAB=2:4 for any passenger car in the crash.  

• Passenger cars and LTVs were defined using the same definition as ESC (see Appendix 
C.1.1). 

                                                 
27 It is assumed that crashes involving skidding are included in the general loss of control category. The sub-type of 
loss of control crashes that result from flat tires and blowouts is not included here to prevent double counting of 
benefits. However, all other types of loss of control crashes are included in order to match the broad target 
population in the FRIA. Additionally, it is assumed that tire pressure could be a contributing factor for any loss of 
control crash, no matter the initial cause (such as vehicle failure or roadway conditions).  
28 Only crashes with skidding are expected to benefit from the improvement in braking associated with TPMS 
(because before the point at which the tires lose their friction capabilities, it is assumed that all potential 
inadequacies in braking performance are perceived and compensated for by the driver). 
29 If a crash involves both an LTV and a passenger car that used their brakes, it will be grouped with crashes in 
which at least one LTV braked and will be excluded from the crashes in which at least one passenger car braked, to 
prevent double counting of benefits. It is expected that for crashes in which both cars were braking, TPMS is more 
likely to have an effect (because it could improve the braking performance of both cars), and therefore, it is 
reasonable to group these crashes with the LTV target population which has a higher effectiveness than the 
passenger car target population. 
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C.6.2 TPMS Effectiveness 
Effectiveness estimates were calculated based on the data and procedures in the FMVSS No. 138 
FRIA (NHTSA, 2005) and adjusted based on the results of NHTSA’s post-implementation 
evaluation of the effectiveness of TPMS (Sivinski, 2012). These calculations are summarized for 
each target population in the following sections.  
 
Loss of Control Crashes 
The FMVSS No. 138 FRIA reports that 0.77 percent of crashes are loss of control crashes with 
low tire pressure as a probable cause. It was also reported that in 1999, there were 10.5 million 
vehicles involved in injury or property damage crashes, and 413,000 vehicles involved in loss of 
control crashes. Based on the FRIA estimate and the crash counts in 1999, approximately 80,850 
vehicles (0.77% * 10.5 million vehicles) would have been involved in loss of control crashes 
with low tire pressure as a probable cause, and 19.6 percent of loss of control crashes (80,850 
vehicles/413,000 vehicles) were estimated to have had low tire pressure as a probable cause. 
Based on this estimate, 19.6 percent of loss of control crashes could potentially have been 
prevented by improved tire inflation. The resulting effectiveness of improved tire inflation was 
then calculated based on the percentage of vehicles expected to actually experience improved tire 
inflation due to TPMS. Post-implementation data showed that TPMS was 55.6 percent effective 
at preventing underinflation of 25 percent or more of placard pressure (Sivinski, 2012). 
Therefore, the percentage of loss-of-control crashes caused by low pressure was multiplied by 
55.6 percent, to estimate effectiveness of 10.9 percent (19.6% * 55.6%). In other words, it was 
estimated that installation of a TPMS compliant with FMVSS No. 138 would prevent 10.9 
percent of crashes in the target population of loss of control crashes. 
 
Crashes Resulting From Flat Tires and Blowouts 
The FMVSS No. 138 FRIA relied on the following estimates:  
 

• Underinflation was involved in 20 percent of cases where a flat tire or blowout caused the 
crash, and 

• Approximately 50 percent of the crashes caused by a flat tire or blowout, in which 
underinflation was involved, would be affected by improved tire inflation (while the rest 
would be affected by better-quality tires). 
 

Therefore, the potential effectiveness of improved tire inflation, as applied to crashes resulting 
from flat tires and blowouts, was estimated to be 10 percent (20% * 50%) using the FRIA 
estimates, in the absence of more recent information. The potential effectiveness of improved tire 
inflation was then adjusted for the percentage of vehicles expected to actually experience 
improved tire inflation due to TPMS. Post-implementation data shows that TPMS was 55.6 
percent effective at preventing underinflation (Sivinski, 2012). Therefore, the potential 
effectiveness was multiplied by 55.6 percent, resulting in an ultimate adjusted calculated 
effectiveness of 5.56 percent (10% * 55.6%). In other words, it was estimated that installation of 
a TPMS compliant with FMVSS No. 138 would prevent 5.56 percent of crashes in the target 
population of crashes resulting from flat tires and blowouts. 
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Braking-Involved Crashes 
Based on an analysis of the average stopping distance of the existing vehicle fleet and the 
predicted average stopping distance of a vehicle fleet with properly inflated tires, the FMVSS 
No. 138 FRIA reported that 1.38 percent of all passenger car crashes and 1.36 percent of all LTV 
crashes could be prevented with improved tire inflation. These estimates were used in the 
absence of more specific estimates for the cases in the TPMS target populations. However, in 
order to apply this effectiveness estimate to the target population of braking involved crashes, it 
was necessary to convert it from a percentage of all crashes to a percentage of braking-involved 
crashes, using the total number of crashes and the number of braking-involved crashes (similar to 
the logic used for the loss of control crashes). Because this data was not provided in the FRIA, 
these numbers were calculated based on the baseline retrospective dataset using Equation (47) 
and the target population defined in Appendix C.6.1, as shown in Table 85.  
 
 𝐸𝐸𝑏𝑏𝑐𝑐𝑃𝑃𝑏𝑏𝑊𝑊𝑃𝑃𝑊𝑊 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃ℎ𝑊𝑊𝑃𝑃 =

𝑃𝑃𝑐𝑐𝑊𝑊𝐷𝐷𝑊𝑊𝑃𝑃𝑡𝑡𝑃𝑃𝑏𝑏𝑃𝑃𝑊𝑊𝑃𝑃𝑓𝑓𝑓𝑓 ∗  𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓
𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑂𝑂𝑟𝑟𝑃𝑃𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠

=  
𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑠𝑠𝑟𝑟𝑃𝑃𝑂𝑂𝑓𝑓𝑟𝑟
𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑂𝑂𝑟𝑟𝑃𝑃𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠

 (47) 

 where: 
Variable values are defined in Table 85. 

 

 
Table 85. Variables used in calculation of effectiveness in Equation (47) 

 Percentage 
of all crashes 

prevented 
[FMVSS No. 
138 FRIA] 

 

Total number 
of crashes 
[Baseline 

Retrospective 
Dataset 

(weighted)] 

Total number 
of braking 

crashes 
[Baseline 

Retrospective 
Dataset 

(weighted)] 

Crashes 
prevented 

 

Effectiveness 
of improved 
inflation for 

braking 
crashes 

(Equation 47) 
 

 Preventableall Totalall Totalbraking Totalpreventable Ebraking crashes 

PC 1.38% 2,318,332 79,002 31,993 40.5% 
LTV 1.36% 1,269,452 26,635 17,265 64.8% 

 
The resulting potential effectiveness of improved tire inflation was then adjusted for the 
percentage of vehicles expected to actually experience improved tire inflation due to TPMS. 
Post-implementation data shows that TPMS was 55.6 percent effective at preventing 
underinflation (Sivinski 2012). Therefore, the effectiveness of improved inflation was multiplied 
by 55.6 percent, leading to a final TPMS effectiveness of 36.0 percent (64.8% * 55.6%) for LTV 
crashes and 22.5 percent (40.5% * 55.6%) for PC crashes.  
 
Summary of FMVSS No. 138 Crash Avoidance Effectiveness Estimates 
The effectiveness estimates calculated in the preceding sections are summarized in Table 86 and 
were applied to cases in the target population as a reduction in case weight.  
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Table 86. FMVSS No. 138 crash avoidance effectiveness estimates 

Target Population Effectiveness 
Loss of control crashes 10.9% 
Crashes resulting from flat tires and blowouts 5.56% 
Crashes in which at least one LTV braked and skidded 36.0% 
Crashes in which at least one PC and no LTV braked and skidded 22.5% 

C.6.3 TPMS Penetration  
The penetration of TPMS by model year, shown in Table 87, was estimated based on NHTSA 
estimates of installations of FMVSS No. 138-compliant systems (Simons, 2017; Simons, 
personal communication30).  

 
Table 87. Penetration of FMVSS No. 138 by vehicle model year (αMY) 

Model Year αMY (%) 
PC LTV 

≤ 2004 7.7 21.4 
2005 7.8 30.0 
2006 21.4 30.8 
2007 44.7 61.3 

2008 and later 100.0 100.0 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of FMVSS 
No. 138 among vehicles in projection crash years was estimated in Table 88. 
 

Table 88. Penetration of FMVSS No. 138 in projection target years (overall βTY) 

Crash Year Overall βTY (%) 
PC LTV 

2014 78.2 82.8 
2020 93.1 94.6 
2025 98.2 98.6 
2030 99.7 99.7 

                                                 
30 James F. Simons, Bowhead Logistics Solutions, LLC, Alexandria, VA, personal communication, February 2018. 
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Appendix D: Crash Mitigation Countermeasures 

D.1 Crash Imminent Braking Component of AEB Systems  
The crash prevention effects of AEB with FCW were estimated in Appendix C.2. However, it 
was expected that crash severity will be reduced, even in the crashes that cannot be prevented by 
these technologies. In the absence of specific estimates of the expected decrease in crash severity 
in the rear impact crashes not prevented by AEB with FCW, the potential reduction in injury 
severity was estimated based on the speed reduction required for crash imminent braking (CIB) 
systems by the terms of the March 2016 voluntary AEB commitment by U.S. manufacturers 
(NHTSA, 2016b). Therefore, in this analysis, the estimate of crashes mitigated by AEB systems 
was based solely on the contribution of CIB performance. As any additional information comes 
available, these estimates can be updated or replaced in the projection model. 

D.1.1 CIB Target Population  
The target population for the crash mitigating effects of the CIB component of AEB systems was 
the same as that for the crash prevention effects of AEB with FCW, with the exception of a more 
limited range of crash severity. The ranges of delta V for which CIB was estimated to be 
effective (i.e., the crash delta V in the target population) are listed in Table 89. Refer to C.2.1 
details.  

D.1.2 CIB Effectiveness 
In cases where AEB with FCW fails to prevent a crash, the CIB component of AEB was 
expected to reduce the severity of many crashes. Estimates of its severity mitigating 
effectiveness were made based on the minimum crash mitigation requirements in the 2016 
voluntary agreement. The crash mitigation effects were applied after the crash avoidance effects 
of AEB and FCW have been applied, so that they reduced the outcome severity of crashes not 
prevented by these countermeasures. The estimated crash mitigation effectiveness was consistent 
with field data that shows that effectiveness for the prevention of injury crashes was higher than 
overall crash prevention effectiveness. 
 
The requirements of the March 2016 voluntary agreement indicate that CIB systems are expected 
to meet one of two performance targets. Option A requires a speed reduction greater than 10 mph 
at only 12 or 24 mph closing speed, while Option B calls for a speed reduction greater than 5 
mph at both 12 and 24 mph closing speeds. In the absence of information regarding which option 
was likely to be more widely adopted, this countermeasure was applied in the model with a range 
of values that assumed closing speed reductions of at least 5 or 10 mph in rear-impact crashes 
with closing speeds of 12 or 24 mph. Based on the broad approximation that rear-impact delta V 
is about 60 percent of closing speed (Anderson et al., 2012), this required speed reduction range 
would translate roughly to an expected reduction in delta V of 3 to 6 mph in crashes with striking 
vehicle delta V of 7 to 14 mph. Therefore, average CIB effectiveness, neglecting the contribution 
of FCW to crash severity mitigation, might be roughly estimated on aggregate as an average 
delta V reduction of approximately 4.5 mph in rear-impact crashes with delta V between 7 and 
14 mph. According to an estimate of the risk of moderate-to-fatal injury (MAIS 2+) in rear-
impact (Kusano & Gabler 2011), a 4.5 mph reduction in delta V over the range of 7 and 14 mph 
would result in an average reduction in moderate-to-fatal injury risk of 45 percent for striking 
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vehicle drivers and 38 percent for struck vehicle drivers. If it is assumed that these driver injury 
risks can also be applied to striking and struck vehicle passengers, they can be used to estimate 
the reduction in moderate-to-fatal injuries expected in vehicles with CIB, i.e., the percentage of 
cases in which all AIS 2+ injuries would be prevented. 
 
Several estimates and simplifications were made in the application of this risk reduction to the 
current analysis. The preliminary effectiveness estimates that were made based on the following 
approximations are shown in Table 89:  
 

• Given that 57.04 percent31 of all CDS AIS2+ occupants in rear-end crashes with known 
delta V get their injuries in crashes where the striking-vehicle delta V was between 7 and 
14 mph, the estimate that CIB prevents 45 percent of rear-impact striking injuries 
between 7 and 14 mph and 0 percent of injuries outside this range was equivalent to 
estimating that CIB prevents 57.04 percent*45 percent (25.67%) of all rear-impact 
striking vehicle injuries. Similarly for struck vehicles, the estimate that CIB prevents 38 
percent of injuries at striking vehicle delta V between 7 and 14 mph was equivalent to 
estimating that CIB prevents 57.04%*38% (21.68%) of all rear-impact struck vehicle 
injuries. Therefore, for cases where striking vehicle delta V was unknown, the estimated 
injury reduction with CIB in the striking vehicle was estimated to be 25.67 percent for 
striking vehicle occupants and 21.68 percent for struck vehicle occupants. 

• These estimates do not account for the proportion of vehicles that may be designed to 
meet only Option A (with a speed reduction greater than 10 mph at only 12 or 24 mph 
closing speed) or only Option B (with a speed reduction greater than 5 mph at both 12 
and 24 mph closing speeds) in the March 2016 voluntary agreement. However, on 
aggregate, these estimates of the overall effectiveness of AEB systems in the mitigation 
of crash and injury severity in rear impacts may be conservative in that the crash 
mitigating effects of FCW are ignored, as are any effects of the CIB system at delta V 
above and below the 12 to 24 mph closing speed range. 

• These estimates do not account for any negative effects of these systems, such as the 
potential increase in impacts to the rear of vehicles equipped with AEB systems as a 
result of more effective braking (Cicchino, 2016). 
  

                                                 
31 This value was obtained via direct analysis of the baseline retrospective dataset. Among struck-vehicle and 
striking vehicle-occupants in rear-end crashes with MAIS2+ injuries, 57.04% sustained those injuries in crashes 
where the striking vehicle delta V was 7 to 14 mph. 
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Table 89. CIB effectiveness estimates (crashes mitigated)  

Delta V of Striking Vehicle 
 

Case Occupant 
Vehicle 

Effectiveness 
(AIS 2+) 

DVTOTAL≤10 km/h (6 mph) 
OR 
DVEST<10 km/h 

Striking (bullet) 0 

Struck (target) 0 

11 km/h≤DVTOTAL≤23 km/h  
(7-14mph) 

Striking (bullet) 45% 
Struck (target) 38% 

DVTOTAL≥24km/h (15 mph) 
OR 
DVEST>24 km/h 

Striking (bullet) 0 

Struck (target) 0 

Unknown 
Striking (bullet) 25.67% 
Struck (target) 21.68% 

 
Effectiveness, as implemented for mitigation of injuries with CIB, was defined as the percentage 
of AIS 2+ cases in the target population in which all AIS 2+ injuries in each occupant case 
would be deleted.  

D.1.3 Relationship Between CIB and Countermeasures Dependent on Delta V  
In the case-by-case method (see Section 2.6.3), each countermeasure is applied to every 
individual case in its target population based on case variables. Since CIB is expected to modify 
crash delta V, all other countermeasures that rely on crash delta V to determine effectiveness or 
target population were examined to understand any potential interactions.  
 
Although FMVSS No. 301 (Fire Prevention and Crashworthiness), FMVSS No. 208 (Advanced 
Air Bag Update), FMVSS No. 214 (Side Impact Update), and the Side Impact Test update in 
NCAP 2011 all rely on delta V to identify their target populations, there was no overlap in the 
target populations for these countermeasures and the target population for CIB. Therefore, since 
there were no cases to which both the CIB countermeasure and any of these speed-dependent 
countermeasures were based, severity changes resulting from CIB do not need to be considered 
when applying these other countermeasures. Therefore, delta V changes made to cases in the 
CIB countermeasure have no interaction with any of the effects of the above countermeasures 
and no consideration needs to be given to the order in which these countermeasures are applied 
relative to CIB. 
 
FMVSS No. 138 (TPMS), however, relies on delta V and has an overlapping target population 
with CIB. Since the delta V reduction associated with CIB could affect the effectiveness of 
TPMS, which was calculated as a function of delta V, CIB should be applied to cases in the 
projection model before application of TPMS. For each reduced-injury pseudo-case resulting 
from application of CIB, the estimated CIB-associated 4.5 mph (7.2 km/h) reduction in delta V 
(RCIB) will be documented for use in application of the TPMS countermeasure.  
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D.1.4 CIB Fleet Penetration 
For CIB, adjusted effectiveness for occupants in both striking and struck vehicles was calculated 
based on the likelihood that the striking vehicle would be equipped with AEB systems with CIB. 
Therefore, all penetration estimates for this countermeasure were based on the model year of the 
striking vehicle.  
 
The following sources were used to estimate the penetration of AEB with CIB by model year in 
Table 90: 
 

• 2013 to 2018: Data collected by the NCAP program on the installation rate of crash 
mitigation technology (NHTSA, 2018b). 

• 2019+: March 2016 Voluntary Industry Commitment to Advance AEB Technology 
(NHTSA, 2016b). 

 
For 2013 to 2018, the penetration rates estimated for FCW and CIB from NCAP data were 
similar since they are often concomitant technologies. An average of these values was used as a 
surrogate for penetration of AEB with CIB in the projection model for those model years. Based 
on the March 2016 AEB voluntary agreement, it was estimated that the penetration of AEB with 
CIB will peak in model year 2023 and be installed in 94.1 percent of vehicles. This estimate 
corresponds to AEB/CIB being installed in 95 percent of 99 percent of the fleet, since 
manufacturers of 99 percent of the fleet committed to making 95 percent of their vehicles 
compliant with the voluntary agreement. To estimate the penetration for 2019 and later, 
estimates were linearly interpolated from 2018 (the last year of NCAP data available) to 2023. It 
was estimated that penetration in model years prior to 2013 was negligible since the 2013 rate 
was estimated to be less than 1 percent.  

Table 90. Penetration of AEB with CIB by vehicle model year (αMY) 

Model Year αMY (%) 
≤ 2012 0.0 
2013 0.9 
2014 5.9 
2015 9.1 
2016 9.9 
2017 22.7 
2018 40.2 
2019 50.9 
2020 61.7 
2021 72.5 
2022 83.3 

2023-2030 94.1 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of AEB 
with CIB among vehicles in projection crash years was estimated in Table 91. 
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Table 91. Penetration of AEB with CIB by target crash year (overall βTY) 

Crash Year Overall βTY (%) 
2014 0.6 
2020 14.4 
2025 44.6 
2030 72.3 

D.2 FMVSS No. 138 Tire Pressure Monitoring Systems 
As explained in Appendix C.6, FMVSS No. 138 was expected to reduce the number of skidding 
and loss of control crashes, as well as crashes resulting from flat tires and blowouts. However, 
even in the cases where improved braking performance was not sufficient to prevent the crash, it 
is likely that TPMS could reduce the severity of the remaining (not prevented) braking-involved 
crashes (NHTSA, 2005). Therefore, FMVSS No. 138 was implemented in the model as both a 
crash avoidance and a crash mitigation countermeasure. The crash avoidance portion of FMVSS 
No. 138 is addressed in Appendix C.6. The crash mitigation component of the countermeasure, 
detailed in this section, applied to all crashes that are not prevented by the crash avoidance 
countermeasure. 

D.2.1 FMVSS No. 138 Target Population 
The following target subpopulations, applicable to the crash mitigation portion of FMVSS No. 
138, are defined based on the target populations identified in the FMVSS No. 138 FRIA. It 
should be noted that only crashes with skidding are expected to benefit from the improvement in 
braking associated with TPMS because before the point at which the tires lose their friction 
capabilities, it was assumed that all potential inadequacies in braking performance are perceived 
and compensated for by the driver. The following target subpopulations were defined relative to 
the NASS CDS variables used to code them: 
 

• LTV: Crashes in which at least one LTV applied brakes and skidded: MANEUVER=2:4, 
8:9 and PREISTAB=2:4 for any LTV in crash  

• PC: Crashes in which at least one PC used brakes, excluding cases that are LTV braking-
involved crashes:32 MANEUVER=2:4, 8:9 and PREISTAB=2:4 for any PC in crash  

• PC/LTV defined using the same definition as ESC (see Appendix C.1.1) 
 
These target populations were further divided based on the following categories, using NASS 
CDS variables:  
 

• Wet/dry pavement:  
o Dry: SURCOND=1  
o Wet: SURCOND^=1 

                                                 
32 If a crash involves both an LTV and a passenger car that used their brakes, it will be grouped with crashes in 
which at least one LTV braked and will be excluded from the crashes in which at least one passenger car braked, to 
prevent double counting of benefits. It is expected that for crashes in which both cars were braking, TPMS is more 
likely to have an effect (because it could improve the braking performance of both cars), and therefore, it is 
reasonable to group these crashes with the LTV target population (which has a higher effectiveness than the 
passenger car target population). 
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• Speed limit:  
o 0-35 mph: SPLIMIT<57 
o 36-50mph: 57<SPLIMIT<81 
o 51+ mph: SPLIMIT>81 

 
Speed limit was unknown for approximately 1.2 percent of the cases in the target population in 
the stepping-stone dataset. These unknown speed-limit cases were binned with the 0-35 mph 
cases since the majority of cases where speed limit was known fall into this case, and it was also 
associated with the most conservative speed reduction among the bins. 

D.2.2 FMVSS No. 138 Effectiveness 
Crash mitigation effectiveness estimates for braking-involved crashes were calculated based on 
the data and procedures in the FMVSS No. 138 FRIA. Effectiveness was estimated as the 
percentage of cases involving a given MAIS that would see a severity reduction or deletion of 
the injury. Calculated trickle-down proportions reflect the proportion of cases in which the injury 
severity will be reduced and in what proportion the injury will be prevented.  
 
Effectiveness values and injury-severity trickle-down effects were estimated as a function of the 
roadway condition (wet and dry), roadway speed limit (0-35pmh, 36-50pmh, and 51+mph), 
vehicle type (PC and LTV), and delta V using a four-step process, outlined below. 
 
Step 1: Apply Reduction in Delta V 
The FMVSS No. 138 FRIA reports average reductions in delta V for the target subpopulations 
shown in Table 92, based on the average change in stopping distance expected to result from 
improved tire inflation. Separate values were reported for vehicles with and without anti-lock 
brakes (ABS). However, because the majority of vehicles in the projection dataset have ABS 
installed, only the ABS values were used in this analysis. These reductions in delta V were 
applied to each case in the braking-involved crash target population to estimate the expected 
reduced delta V with improved tire pressure among cases in each of the subpopulations defined 
in Appendix D.2.1. For example, each vehicle in a case involving a braking LTV on wet 
pavement in a 40 mph speed-limit zone would be estimated to have a 4.53 mph drop in delta V 
with improved tire pressure in the braking LTV (per Table 92). In cases in which there was more 
than one braking vehicle and each vehicle could be assigned a different delta V reduction, the 
highest reduction in delta V was applied to the entire case. In cases with unknown delta V, zero 
reduction in delta V was assigned.  
 
For each occupant in the target population, this delta V reduction was applied to the delta V 
(DVoriginal) in the case occupant’s vehicle prior to application of the TPMS countermeasure. 
DVoriginal was based on the delta V coded in the original CDS case, and reduced by RCIB, which 
was the reduction in delta V resulting from the application of the CIB countermeasure, as 
discussed on page 187. If the case was not affected by the CIB countermeasure, RCIB was 0. If 
the severity of the case was mitigated by the CIB countermeasure, RCIB was 4.5 mph (7.2 km/h).  
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 Table 92. Average reduction in delta V from improved tire pressure (NHTSA, 2005) 

Vehicle Type Wet/Dry Pavement Speed Limit 
Weighted Average 

Reduction in Delta V 
(mph) 

PC 

Wet 
0-35 mph 2.858 

36-50 mph 4.065 
51+ mph 5.196 

Dry 
0-35 mph 2.263 

36-50 mph 3.208 
51+ mph 4.068 

LTV 

Wet 
0-35 mph 3.185 

36-50 mph 4.530 
51+ mph 5.789 

Dry 
0-35 mph 2.533 

36-50 mph 3.589 
51+ mph 4.406 

 
Step 2: Risk of Case Injury as Function of Delta V  
For the delta V in the case occupant’s vehicle prior to application of the TPMS countermeasure 
(DVoriginal) and the expected delta V with improved tire pressure (DVTPMS) estimated in Step 1, 
the risk of an injury of the severity documented in the occupant case as well as the risk of fatal 
injury was estimated with and without TPMS from the relationships in Table 93 and Equations 
(48) and (49). For example, in an occupant case with MAIS 3 injuries, the risk of MAIS 3 
injuries was calculated at the original vehicle delta V in the case and at the estimated reduced 
delta V with improved tire pressure. The risk of fatality at each of those delta V was also 
calculated for each case. The injury risk probabilities in Table 93 were derived based on crashes 
where at least one passenger vehicle used brakes.   
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Table 93. Injury risk probability curves  

Injury Level Delta V Risk-Prediction Formula 

MAIS 0 
Delta V≤ 35 𝑊𝑊−.0807𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉 
Delta V≥ 36 0 

MAIS 1+ 
Delta V≤ 35 0.93221 ∗ sin(0.0449 ∗ 𝐷𝐷𝑊𝑊𝑃𝑃𝑡𝑡𝑃𝑃 𝐿𝐿) 
Delta V≥ 36 100 

MAIS 2+ all 𝑊𝑊0.1683𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−5.0345

1 + 𝑊𝑊0.1683𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−5.0345 

MAIS 3+ all 𝑊𝑊0.1292𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−5.5337

1 + 𝑊𝑊0.1292𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−5.5337 

MAIS 4+ all 𝑊𝑊0.1471𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−7.3675

1 + 𝑊𝑊0.1471𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−7.3675 

MAIS 5+ all 𝑊𝑊0.1516𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−7.8345

1 + 𝑊𝑊0.1516𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−7.8345 

Fatal all 𝑊𝑊0.1524𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−8.2629

1 + 𝑊𝑊0.1524𝐷𝐷𝑟𝑟𝑓𝑓𝑟𝑟𝑃𝑃 𝑉𝑉−8.2629 

 
 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑀𝑀𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠 = 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑀𝑀𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠+ − 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑀𝑀𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠+1 (48) 

 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹 = 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹 (49) 

 where: 
MAISn is the estimated risk of injury of the severity n of the case injury.  

 
Step 3: Estimation of Effectiveness  
Effectiveness of improved tire pressure was estimated as a function of the risk of injury with and 
without improved tire pressure (Equation (50)). Effectiveness of improved tire pressure was 
individually calculated for each case occupant, based on that occupant’s MAIS injury, the 
original delta V of the occupant’s vehicle, and the estimated reduced delta V with improved tire 
pressure (DVimproved TP) in the braking vehicle in the crash. 
 

 𝐸𝐸𝐼𝐼𝐼𝐼𝑠𝑠𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑎𝑎 𝑅𝑅𝑃𝑃 = 1 −
(𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑀𝑀𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠�𝐷𝐷𝐿𝐿𝐼𝐼𝐼𝐼𝑠𝑠𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑎𝑎 𝑅𝑅𝑃𝑃� + 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑊𝑊𝑃𝑃𝑟𝑟𝑃𝑃𝑓𝑓�𝐷𝐷𝐿𝐿𝐼𝐼𝐼𝐼𝑠𝑠𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑎𝑎 𝑅𝑅𝑃𝑃�)

(𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑀𝑀𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠(𝐷𝐷𝐿𝐿𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑓𝑓)+𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑊𝑊𝑃𝑃𝑟𝑟𝑃𝑃𝑓𝑓(𝐷𝐷𝐿𝐿𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑓𝑓))
 (50) 

 
The resulting effectiveness of improved tire inflation was then adjusted for the percentage of 
vehicles expected to actually experience improved tire inflation due to TPMS. Post-
implementation data showed that TPMS was 55.6 percent effective at preventing underinflation 
(Sivinski, 2012). Therefore, the effectiveness of improved tire pressure was multiplied by 55.6 
percent to estimate the effectiveness of TPMS. The final effectiveness was adjusted based on 
penetration of TPMS, as for all countermeasures. 
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Step 4: Injury Severity Trickle-Down  
While the effectiveness from Step 3 (after adjustment for penetration) ultimately reflected the 
proportion of cases in which a given occupant’s injury severity would be reduced, information 
from benefits evaluation for FMVSS No. 138 was used to estimate the proportion of those 
affected injuries that would trickle-down to each lower level of AIS severity (Equation (51)). 
After application of effectiveness, a pseudo-case with the same injuries as the initial case 
represented the proportion of cases in which FMVSS No. 138 was expected to have no effect. 
Additional pseudo-cases with all injuries reduced to each lower AIS level were weighted by the 
product of TPMS effectiveness (adjusted for penetration) and the trickle-down proportion for 
that AIS severity level. For example, in an occupant case that originally had MAIS 3 injuries and 
where TPMS penetration-adjusted effectiveness was calculated in Step 3 to be 25 percent, the 
proportion of those 25 percent of cases that will trickle down to MAIS 2, 1, and 0 were estimated 
using Equation (51). The proportion that trickle down to MAIS 2 was calculated as the risk of 
MAIS 2 injury with improved tire pressure (Table 93 and Equation (51)), as a proportion of the 
sum of the risk of MAIS 0, 1, or 2 injury.  
 
 𝑇𝑇𝑐𝑐𝑊𝑊𝑐𝑐𝑏𝑏𝑃𝑃𝑊𝑊 − 𝐿𝐿𝑃𝑃𝑑𝑑𝑃𝑃 𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃𝑥𝑥 = �

𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑀𝑀𝑅𝑅𝐼𝐼𝑁𝑁 𝑥𝑥(𝑑𝑑 𝑅𝑅𝐼𝐼𝑃𝑃𝑐𝑐𝑃𝑃𝐷𝐷𝑊𝑊𝐿𝐿 𝑇𝑇𝑃𝑃)
∑ 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑀𝑀𝑅𝑅𝐼𝐼𝑁𝑁 𝑠𝑠  (𝑑𝑑 𝑅𝑅𝐼𝐼𝑃𝑃𝑐𝑐𝑃𝑃𝐷𝐷𝑊𝑊𝐿𝐿 𝑇𝑇𝑃𝑃)𝑀𝑀𝑅𝑅𝐼𝐼𝑁𝑁𝑛𝑛−1
𝑠𝑠=𝑀𝑀𝑅𝑅𝐼𝐼𝑁𝑁0−1

� (51) 

 
where: 

x is an AIS severity level below the initial MAISn in the original retrospective case 
Trickle-down proportionx is the proportion of prevented MAISn injuries that are expected to 

trickle-down to severity level x. 
 

In each pseudo-case representing cases where the MAIS injury severity was expected to be 
reduced to a lower MAIS severity, each individual injury with a severity higher than the reduced 
case MAIS was reduced to the new MAIS severity. 

D.2.3 Relationship Between TPMS and Other Countermeasures  
In the case-by-case method (see Section 2.6.3), each countermeasure was applied to every 
individual case in its target population based on case variables. Effectiveness of TPMS was 
estimated as a function of the delta V of the case occupant’s vehicle prior to application of 
TPMS. That delta V was estimated from the original delta V documented in the CDS case, and 
adjusted for any expected delta V reduction associated with the application CIB (RCIB) as 
discussed on page 187. Therefore, TPMS must be applied after CIB in the model. 
 
Since TPMS is also expected to modify crash delta V in braking-involved crashes by 2 to 6 mph, 
all other countermeasures that rely on crash delta V to determine effectiveness or target 
population were examined to understand any potential interactions.  
 
Several countermeasures whose target populations overlap with TPMS use delta V to define their 
target populations: FMVSS No. 208 (Advanced Air Bag Update), FMVSS No. 214 (Side Impact 
Update), updates to NCAP Frontal and Side Impact Tests (NCAP Enhancement in 2011 and 
hypothetical future updates), and FMVSS No. 301 (Fire Prevention and Crashworthiness). These 
countermeasures vary in terms of the delta V variable relied on (DVTotal, DVLong, DVLat, 
etc.). The delta V reduction estimated in the TPMS countermeasure is applied broadly to all 
directions of delta V.  
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As a result of the reliance of these crashworthiness countermeasures on delta V, TPMS needs to 
be applied to the projection model prior to any of the above countermeasures so that any delta V 
adjustment to cases is applied prior to the determination of each countermeasure’s target 
population. For each reduced-injury pseudo-case resulting from application of TPMS, the 
estimated TPMS-associated reduction in delta V (RTPMS), ranging from 2 to 6 mph was 
documented for use in the application of each of the potentially affected countermeasures. 

D.2.4 FMVSS No. 138 Penetration  
Refer to Appendix C.6.3 for details on the estimated fleet penetration of FMVSS No. 138.  
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Appendix E: Crashworthiness Countermeasures  

E.1 FMVSS No. 202 Head Restraint Upgrade 
This upgrade required head restraints to be higher and closer to the head than previously 
mandated and to be available in front outboard positions. Head restraints were not required in 
rear positions, but those that were installed needed to meet height, strength and position 
requirements. The definition of a vehicle with a rear seat head restraint was based on the 
seatback height. Vehicles with rear seat seatbacks of 700 mm or greater must meet the head 
restraint requirements. Although a Final Rule was issued in 2004, a revised Final Rule was 
issued in 2007, with a revised procedure for measuring backset. The specified backset and height 
limits were unchanged from the 2004 Final Rule but the 2007 Final Rule required that 
measurements be taken with the seat at the design angle (defined in the final rule) rather than at 
25 degrees, essentially reducing the average effectiveness of the update for front seat outboard 
occupants. 
 
The target population and effectiveness used in the projection model were based on information 
from NHTSA’s Final Regulatory Impact Analysis for the FMVSS No. 202 Upgrade (NHTSA, 
2004) as well as on the Supplemental Final Regulatory Evaluation associated with the 2007 Final 
Rule (NHTSA, 2007d). Penetration estimates were based on subsequent data collected by 
NHTSA (Simons, 2017). 
 
This effectiveness summary was prepared in order to apply the basic effects of FMVSS No. 202 
improvements on the projection dataset. The effects, however, are not clearly shown in the 
current projection model results given the absence of an injury measure for the characterization 
of AIS 1 neck injuries. When a disability measure is incorporated into the model, this 
effectiveness estimate will be revisited with consideration to development of methods to 
calculate more targeted effectiveness estimates for subpopulations based on vehicle type (LTV or 
passenger car), occupant stature, etc. 

E.1.1 Head Restraint Upgrade Target Population 
The target population included occupants who met these inclusion criteria: 
 

• Outboard seating positions 
• Passenger vehicles 
• Non-rollover cases 
• Struck vehicles in rear impacts  
• Documented cervical spine strain injury: AIS=640278.1 

 
These target populations were identified in the projection model using the following NASS CDS 
variables and definitions: 
 

• SEATPOS in (11, 21, 31, 41, 51, 13, 23, 33, 43, 53) 
• BODYTYPE<50 
• ROLLOVER=0  
• Rear impact defined with the projection model’s impact direction taxonomy (Table 25)  
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The FRIA noted that whiplash injuries can occur at low speeds and may occur in crashes that do 
not appear in NASS CDS: non-towaway crashes or crashes not reported to police. The resulting 
under-representation of lower-severity injuries in the NASS CDS source cases was addressed 
with upweighting procedures in the projection model to account for non-towed cases and under-
reporting of low-severity crashes to the police. 

E.1.2 Head Restraint Upgrade Effectiveness 
Effectiveness was implemented in the projection model as the deletion of AIS 1 cervical strain 
injuries (AIS=640278.1). 
 
Front Outboard Seat Positions  
On average, the FRIA-estimated effect of improving front outboard restraint height and backset 
from their pre-upgrade fleet averages to the required dimensions in the 2004 final rule was a 3.5 
percent injury reduction. This effectiveness was associated with reduction of all injury types. 
Since whiplash injuries were estimated to be the only injury in 60 percent of crashes in the target 
population and head restraints were defined to be effective only for reducing whiplash injuries, 
then the estimated overall effectiveness of vehicles meeting the upgraded requirements at 
preventing whiplash injuries was estimated in the FRIA to be 3.5%/0.6=5.83%. According to the 
Supplemental Final Regulatory Evaluation, the relaxation of the backset requirements in the 
2007 final rule reduced this estimated effectiveness to a range between 3.83 percent and 5.83 
percent, depending on the selected position of adjustable head restraint, for a weighted average 
estimate of 4.42 percent.  
 
Rear Outboard Seat Positions  
In rear outboard seat positions, it was estimated that only 41.7 percent of vehicles would be 
subject to the rear seat head restraint requirements based on the height of rear seatbacks prior to 
the introduction of the rule, relative to the 700 mm threshold. The overall effectiveness of height 
and backset improvements in injury reduction was estimated to be 12.6 percent for vehicles with 
initial seatback height in the targeted range. Adjusting for the frequency of whiplash injuries, 
effectiveness of the improvements for decreasing whiplash injury specifically was 
12.6/0.6=21%. Average effectiveness across all vehicles, including those with seatback height 
below 700 mm was 0.417*21%=8.76%. This estimate was unchanged in the Supplemental Final 
Regulatory Evaluation for the 2007 Final Rule. 

E.1.3 Head Restraint Upgrade Penetration 
According to the Final Rule for the FMVSS No. 202 upgrade, it became mandatory for the front 
seat starting with vehicles manufactured on or after September 1, 2009, i.e., in MY 2010. The 
rule became mandatory for the rear seat a year later, i.e., starting in MY 2011. In both the front 
and rear seats, 80 percent compliance was required in the first year, followed by 100 percent in 
the next year. A survey of 14 MY2009 vehicles showed no vehicle that met both the height and 
backset requirements in the revised rule. Front seat penetration for MY 2010 and beyond (Table 
94) was available for the front seat from NHTSA data that assumed no voluntary compliance 
prior to 2010 (Simons, 2017). Rear seat penetration was estimated assuming a one-year delay 
relative to front seat penetration.   
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Table 94. Penetration of head restraint upgrade by vehicle model year (αMY) 

Model Year αMY (%) 
Front seat 

αMY (%) 
Rear seat 

≤ 2009 0.0 0.0 
2010 92.0 0.0 
2011 100.0 92.0 

2012 and later 100.0 100.0 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of the head 
restraint upgrade among vehicles in projection crash years was estimated in Table 95. 

Table 95. Penetration of head restraint upgrade in projection target years (overall βTY) 

Crash Year Overall βTY (%) 
Front seat 

Overall βTY (%) 
Rear seat 

2014 48.4 37.9 
2020 79.9 74.0 
2025 94.0 91.7 
2030 98.7 98.1 

E.2 FMVSS No. 208 Advanced Air Bag Update 
The May 2000 amendment to FMVSS No. 208 to require advanced air bags and the subsequent 
amendment to add a high-speed belted test for the 5th percentile dummy targeted the twin goals 
of minimizing the risk of serious injuries caused by air bags and improving frontal crash 
protection for all occupants. Only the improved frontal crash protection associated with these 
amendments were incorporated into the current projection model. 

E.2.1 Advanced Air Bag Target Population 
The target population, as defined in the Final Economic Assessment in May 2000 (NHTSA, 
2000), included frontal crash occupants in the categories listed below. The following list includes 
the NASS CDS variables used to identify the target population in the model.  
 
Seated in Front-Outboard Positions: 

• Driver: SEATPOS=11 
• Passenger: SEATPOS=13 

Adults by Stature: 

• Age 13+ 
• 50th applicable occupants are 65” tall and taller 

o Where height is unknown, males are in the 50th applicable population 
• 50th tests explicitly estimated to include population covered by 95th percentile male 

dummy (page VI-2, May 2000 FEA) 
• 5th applicable occupants are shorter than 156 cm (65”) 

Where height is unknown, females are in the 5th applicable population  
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Delta V: 

• For Phase 1 and 2 tests, target population used the test speed as the maximum delta V in 
the target population. Additionally, it was assumed that benefits would primarily be 
drawn from cases with delta V of at least 15 mph when air bags are more likely to 
deploy. Thus, for the 25-30 mph test, target population included all crashes with 15 
mph<=delta V<30 mph. The delta V for this countermeasure was evaluated against the 
case delta V estimated in the original CDS case, and adjusted to reflect the expected delta 
V reduction (RTPMS) resulting from application of TPMS in each case where it applied. 
The code associated with this delta V inclusion criteria was coded using NASS CDS 
variables (DVTOTAL, DVLONG, and DVEST) and projection model variables (RTPMS):  

o 24<=(DVTOTAL – RTPMS)<=48 km/h or 
o 24<=(DVLONG – RTPMS)<=48 km/h 

• The target population for the high-speed test with the 5th female was applied only to 
cases with (DVTOTAL – RTPMS) or (DVLONG – RTPMS)>48 km/h. 

• Where DVTOTAL and DVLONG were unavailable, DVEST was used.  
 
The subpopulations subject to the improvements associated with each test type were established 
based on NHTSA review of potential test procedures (Hollowell et al., 1999) and the 
categorization scheme on which it was based from Stucki’s ESV paper (Stucki et al., 1998). Each 
subpopulation was defined with NASS CDS variables, as follows: 
 

• Rigid barrier, perpendicular 
o DOF33=12 & GAD1=F & SHL1 in (D, Z, Y) 

• Rigid barrier, perpendicular and up to 30 degrees oblique 
o DOF=12 & GAD1=F & SHL1 in (D, Z, Y) or 
o DOF=10-2 & GAD1=F & SHL1=D & Fixed Object Contacted 

(OBJCONT=41:69), or 
o DOF in (10, 11, 1, 2) & GAD1=F and SHL1 in (R, L, Y, Z) 

• 40 percent offset frontal, deformable barrier test 
o DOF=10-2 & SHL1 in (L, R, Y, Z), or 
o DOF=10-2 & GAD1 in (L, R) and SHL1=F 

• Only belted occupants were included in the target population for belted tests and only 
unbelted occupants were included in the target population for unbelted tests.  
 

Note that these divisions matched the populations used to calculate the effectiveness values in 
the May 2000 Final Economic Analysis for the Advanced Air Bag Rule and were different than 
those used currently by the agency to define oblique impacts. 
 

                                                 
33 For DOF limitations defined in these target subpopulations, each category was coded to include cases coded with 
non-horizontal DOF. For example, for target subpopulations that included 12 o’clock (DOF=12), the code was 
written to also capture 12 o’clock impacts with non-horizontal components, i.e., DOF=12, 32, 52, 72, and 92. For 
more details on DOF coding of non-horizontal impacts, please refer to the NASS CDS Analytical User’s Manuals 
(Radja, 2016). 
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Effectiveness was calculated with respect to fatal or MAIS 2-5 head, neck, or chest injuries, 
effectively further limiting the target population for both FMVSS No. 208 amendments to 
occupants with these injuries. 

E.2.2 Advanced Air Bag Effectiveness 
Effectiveness estimates for the FMVSS No. 208 amendments were based on expected injury rate 
reductions calculated from testing and reported in the regulatory evaluations performed prior to 
regulation implementation (NHTSA, 2000). Effectiveness estimates for injuries in each body 
region were made separately for drivers and passengers, for different body regions, and for 
different tests. Estimates of effectiveness for fatally injured occupants were also compared to a 
post-regulation evaluation (Greenwell, 2013). 
 
Effectiveness for femur injury was 0 percent, so no change in femur injury was expected in the 
current analysis. No change in injury risk was expected based on chest deflection in the tests, so 
the effectiveness of the new rule was estimated based on the reduction of chest acceleration in 
tests. The reduction in head injury risk used for this analysis was the average of the reduction 
estimated using Prasad/Mertz and Lognormal methods. 
 
These reduction estimates were applied to the cases in the projection model as follows. For non-
fatal cases, the injury reduction values for AIS 2-6 injuries were drawn from the corresponding 
reported percentage reduction in MAIS 2-5 cases in the FEA (Table 96). These effectiveness 
estimates reflected the percentage of cases in which injuries to each corresponding body region 
were deleted. For example, application of a 5.9 percent effectiveness to a case in the target 
population for head injury reduction resulted in two pseudo-cases: one unchanged pseudo-case 
with a pseudo-weight of 94.1 percent of the original case weight and one pseudo-case with all 
AIS 2-6 injuries deleted and a pseudo-weight of 5.9 percent of the original case weight. The 
effectiveness estimates for each body region were applied sequentially so that a single case could 
be subjected to different effectiveness values for injuries in each body region.   
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Table 96. MAIS 2-6 injury reduction with advanced air bags 

(from Table VI-5-B in May 2000 FEA, averaging head injury values drawn from Mertz/Prasad and 
Lognormal analyses) 

Phase Test Head Neck Chest 

1 

5th 

Unbelted rigid barrier (25 
mph)* 

Driver 0% 8.98 % 1.57 % 
Passenger 0% 5.36 % 2.07 % 

Belted rigid barrier (30 mph) 
Driver 0% 7.40 % 0.27 % 
Passenger 0% 0.81 % 0.28 % 

Belted offset deformable 
barrier (25 mph) 

Driver 0% 11.88 % 0% 
Passenger 5.90 % 3.44 % 0% 

50th 

Unbelted rigid barrier (25 
mph), perpendicular and up to 
30 degrees oblique* 

Driver 0% 0% 0% 

Passenger 0.25 % 0% 0% 

Belted rigid barrier (30 mph) 
Driver 0% 0% 0% 
Passenger 0% 0% 0% 

2 50th Belted rigid barrier (35 mph) 
Driver 0.76 % 0% 0.70 % 
Passenger 1.12 % 0% 0.10 % 

5th 
Female 

Upgrade 
5th Belted rigid barrier (35 mph) 

Driver 0.2% 2.4% 0.1% 

Passenger 0% 0.4% 0% 

* Drawn from reduction estimates based on 20 to 30 mph rigid barrier data in Table V1-5 (Greenwell, 2013). 
 
For fatal cases, i.e., cases that were originally fatal before application of the model, the 
effectiveness estimates in Table 97 were applied to reflect the percentage of cases in which AIS 
2-6 injuries to each corresponding body region would be deleted. While no direct change was 
made to the originally coded fatal status of the case when modeling this countermeasure, 
individual injuries in the case were adjusted. Since the number of fatalities in the projection 
datasets were calculated as a function of the coded injuries in the dataset (rather than using the 
originally coded fatality status) the reduction in the risk of fatality as a result of this 
countermeasure was captured in the projection output. Notably, the effectiveness in prevention of 
injuries to the body regions associated with high threat to life, head and chest, was 0 percent for 
many of the occupant categories in the target population. As a result, the very low estimates of 
injury prevention effectiveness would be expected to be equivalent to even lower estimates of 
effectiveness in terms of fatality prevention. For example, the 6.19 percent effectiveness in neck 
injury prevention for drivers in the target population for the 5th percentile dummy belted offset 
deformable barrier test would not result in a substantial reduction in fatality risk. These FEA-
derived estimates for the effectiveness of injury prevention in each body region in Table 97 were 
compared to the subsequent evaluation of effectiveness in preventing fatality (Greenwell, 2013). 
The Greenwell study concluded that compliance with the regulation had resulted in a small (3%) 
but statistically insignificant reduction in overall fatality among front-seat occupants in frontal 
crashes. That point-estimate of effectiveness likely reflects higher effectiveness (in terms of 
fatality prevention) than was predicted by the pre-regulation estimates of effectiveness relative to 
injury prevention in single body regions among fatally injured occupants (Table 97). However, 
Greenwell’s fatality-reduction estimates varied substantially in the post-regulation evaluation for 
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different categories of target population, including drivers and passengers, occupants in 
passenger cars or LTVs and vehicles with or without advanced features such as multi-stage 
inflators or seat belt sensors. Therefore, although Greenwell’s overall measurement of 
effectiveness was used to confirm that the pre-regulatory predictions of injury-reduction 
effectiveness estimates in fatal cases were not unreasonable, the uncertainty in those estimates 
was too great to use them to adjust or correct the more detailed pre-regulation estimates. 
 

Table 97. Fatal injury reduction with advanced air bags 
(from Table VI-5-A in May 2000 FEA, averaging head injury values drawn from Mertz/Prasad and 

Lognormal analyses) 

Phase Test Head Neck Chest 

1 

5th 

Unbelted rigid barrier (25 mph)* 
Driver 0% 3.51 % .06 % 
Passenger 0% 2.39 % 1.57 % 

Belted rigid barrier (30 mph) 
Driver 0% 3.05 % 0.01 % 
Passenger 0% 0.27 % 0% 

Belted offset Deformable barrier 
(25 mph) 

Driver 0% 6.19 % 0% 
Passenger 2.77 % 1.22 % 0% 

50th 

Unbelted rigid barrier (25 mph), 
perpendicular and up to 30 degrees 
oblique* 

Driver 0% 0% 0% 

Passenger .015% 0% 0% 

Belted rigid barrier (30 mph) 
Driver 0% 0% 0% 
Passenger 0% 0% 0% 

2 50th Belted rigid barrier (35 mph) 
Driver 0.14 % 0% 0% 
Passenger 0.22 % 0% 0% 

5th 
Female 

Upgrade 
5th Belted rigid barrier (35 mph) 

Driver 1.5% 3.3% 1% 

Passenger 0% 0.5% 0% 

* Drawn from reduction estimates based on 20 to 30 mph rigid barrier data in Table V1-5 (Greenwell, 2013). 
 
The pseudo-weights applied to cases with deleted injuries were liberal in that they essentially 
eliminated injuries rather than reducing them and allowing higher-severity injuries to trickle-
down to lower-severity injuries. This simplification was expected to make a relatively small 
difference to the ultimate results given the very small effectiveness values acting on a very 
limited target population. Furthermore, the initial benefits estimate was described as 
“conservative” in that it estimated no benefit below 48 km/h other than the subsequent 5th 
female upgrade and neglected any additional benefits from technologies such as pretensioners. It 
is likely, therefore, that the simplification of injury trickle-down (which may have led to a slight 
overestimate of injury reduction) was balanced by other conservative estimates made in the 
analysis (which were expected to lead to somewhat underestimated injury reductions). 

E.2.3 Relationship Between FMVSS No. 208 and Other Countermeasures  
In the case-by-case method (see Section 2.6.3), each countermeasure was applied to every 
individual case in its target population based on case variables. The target population definition 
for FMVSS No. 208, as well as its effectiveness in preventing head injuries, relied on the 
estimated case delta V. That delta V was estimated from the original delta V documented in the 
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CDS case, but adjusted for the expected delta V reduction associated with the application of 
TPMS (RTPMS) to the striking vehicle as discussed in Section D.2. Therefore, FMVSS No. 208 
must be applied after TPMS in the model. 

E.2.4 Advanced Air Bag Penetration 
According to the Final Rule in May 2000 and the subsequent upgrade for the 5th female, the 
phase-in schedule for large manufacturers was defined as shown in Table 98.  

Table 98. Regulatory phase-in schedule for FMVSS No. 208 updates 

Model 
Year Phase I Phase II 5th 

Female 
2003 0%   
2004 35%   
2005 65%   
2006 100%   
2007    
2008  35%  
2009  65%  
2010  100% 35% 
2011   65% 
2012   100% 

 
Phase I and II penetrations were estimated based on these minimum phase-in requirements, 
under the assumption that compliance rates would increase gradually before the first year of 
phase-in and increase more quickly during the phase-in period. This relationship between the 
required phase-in and the actual adoption rates was modeled based on observed or reported rates 
of compliance to other FMVSS upgrades relative to phase in requirements, for standards where 
data was available. A similar estimate of compliance was made for the 5th female upgrade to 
FMVSS No. 208, relative to phase-in requirements, but was adjusted based on information from 
the 2006 Final Regulatory Evaluation which showed that 4 of 5 vehicles tested already met the 
targets that would be required starting in 2010. Based on that data, it was estimated that 
penetration of improvements related to the 5th female upgrade was at least 80 percent for all 
model years. Therefore, the penetration estimates by model year for the 5th female upgrade show 
the higher value of 80 percent or the penetration estimated by the same methods applied to Phase 
I and II penetration. The estimated penetration by model year is compared to phase-in 
requirements in Figure 26. Final penetration estimates used in the model for all three phases are 
shown in Table 99.  
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Figure 26. Estimated penetration of FMVSS No. 208 update compared with Final Rule requirements 

 
Table 99. Penetration of FMVSS No. 208 update by model year (αMY) 

Model 
Year 

Phase I 
(%) 

Phase II 
(%) 

5th 
Female 

(%) 
≤ 2004 85.0 30.0 80.0 
2005 85.0 38.7 80.0 
2006 100.0 47.5 80.0 
2007 100.0 56.2 80.0 
2008 100.0 73.0 80.0 
2009 100.0 85.5 80.0 
2010 100.0 100.0 80.0 
2011 100.0 100.0 85.5 

2012+ 100.0 100.0 100.0 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of FMVSS 
No. 208 among vehicles in projection crash years was estimated in Table 100. 

Table 100. Penetration estimate for FMVSS No. 208 by target crash year (overall βTY) 

Crash Year Phase I (%) Phase II (%) 5th Female (%) 
2014 98.7 80.3 86.2 
2020 97.6 93.1 93.9 
2025 99.9 98.1 98.0 
2030 100.0 99.6 99.5 
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E.3 FMVSS No. 214 Side Impact Update 
Estimation of the effect of the FMVSS No. 214 update that went into effect for vehicles starting 
with MY 2011 was based primarily on the Final Regulatory Impact Analysis for the update 
(NHTSA, 2007c) because it analyzed effectiveness in terms of injury, while the subsequent 
NHTSA evaluation was limited to analyses of fatality effectiveness. However, since the 
subsequent evaluation of the fatality effectiveness of FMVSS No. 214 demonstrated that FRIA-
estimated effectiveness relative to fatality was overestimated (Kahane, 2014b), corresponding 
adjustments were made to all the FRIA-estimated injury effectiveness values used in the 
projection model.  

E.3.1 Side Impact Update Target Population 
The overall target population for the FMVSS No. 214 update was limited by the crash and 
occupant conditions shown in Table 101. Note that limitations on the lateral delta V in each case 
included in the target population were evaluated against the vehicle delta V expected after 
application of the TPMS countermeasure, which reduced delta V in affected pseudo-cases by a 
reduction of RTPMS. 
 
Target population cases also needed to meet the requirements in Table 102 for the oblique pole 
test target population or the requirements in Table 103 for the moving deformable barrier test 
target population. Occupants in the target population were further divided into subpopulations 
for the purpose of defining effectiveness more precisely for occupants of a given size or with 
specific injury characteristics. These subpopulations are defined in Table 104 to Table 106.  

Table 101. Global target population limitations for FMVSS No. 214 update 

Target Population 
Requirement Corresponding NASS CDS Codes 

Lateral component of delta V 12-
25 mph 

GV/|DVLAT| - RTPMS=19 to 40 km/h 
GV/DVEST=3 (24<delta V<40) 

Age 13+ OA/AGE in 13-97 

Near-side outboard occupants 
(GAD1=R or DOF1=1-5) and SEATPOS=13, 23, 33, 43, 53 
OR 
(GAD1=L or DOF1=7-11) and SEATPOS=11, 21, 31, 41, 51 

Rollover as first event excluded EV/ACCSEQ=1, VEHNUM, OBJCONT in 31, 32 

Impact direction & Impact angle GAD1=R, L, and SHL1=P, Y, Z, and DOF1=1-5, 7-11 
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Table 102. Oblique pole test target population limitations 

Target Population 
Requirement Corresponding NASS CDS Codes 

Front-seat occupants only (see 
Section E.3.2.9 for discussion of 
rear-seat occupants) 

SEATPOS in (11, 13) 

Vehicle-to-pole, or vehicle-to-tree 
impacts 

OBJCONT1 in (41, 42, 45, 50, 51, 52, 53)  
Includes: small tree, large tree, breakaway pole, small pole, 
medium pole, large pole, unknown size pole 

2-3 o’clock and 9-10 o’clock 
impacts (limited based on width of 
bag required in 214 tests) 

DOF1=2-3, 9-10 
Alternative definition in footnote 33 on page V-19 of FRIA 
appears to be global, while pole-test applicability more limited 

Complete ejections excluded  OA/Ejection^=1  

GVWR (Gross Vehicle Weight 
Rating) <10,000 lbs 

 
Table 103. MDB test target population limitations 

Target Population 
Requirement Corresponding NASS CDS Codes 

Front-seat occupants only SEATPOS in (11, 13) 

Vehicle-to-other vehicle or 
roadside objects 

OBJCONT1 in (1-11, 43-44, 46-49, 54-59, 64, 68-71, 77-78) 
Includes: vehicle, bush, embankment, guardrails, concrete or 
traffic barriers, fence, wall, building, bridge, other/unknown 
fixed objects, vehicle not in transport, train/railway vehicle, 
disconnected trailer 

2-3 o’clock and 9-10 o’clock 
impacts (limited based on width of 
bag required in 214 tests) 

DOF1=2-3, 9-10 
Alternative definition in footnote 33 on page V-19 of FRIA 
appears to be global, while pole-test applicability more limited 

Complete ejections excluded34  OA/Ejection^=1 

GVWR <10,000 lbs 
  

                                                 
34 As discussed in Appendix C.3.2, the application of SSF creates pseudo-cases in which rollovers and ejections are 
added to or removed from existing cases in the model. The pseudo-cases in which an ejection is added by the 
application of SSF will be excluded from the 214 target population. The pseudo-cases in which an ejection is deleted 
by the application of SSF will not be excluded from the 214 target population based on ejection status (but they 
could be excluded based on other target population limitations).  
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Table 104. Occupant subpopulations by size 

 

50th Occupant 
Subpopulation 

(for tests with 50th 
percentile male ATD) 

5th Occupant Subpopulation 
(for tests with 5th 

percentile female ATD) 

Height >=65 inches 
[NASS CDS HEIGHT>=165] 

<65 inches 
[NASS CDS HEIGHT<165] 

If height unknown Male 
[NASS CDS SEX=1] 

Female 
[NASS CDS SEX in (2:6)] 

If height and sex unknown Estimated effectiveness based on 
50th percentile test results  

 
Table 105. Occupant subpopulations by head impact source 

Head contact 
source Side Impact Type Corresponding NASS CDS Codes (INJSOU) 

Head-to-pole Vehicle-to-pole INJSOU=598 

Head-to-striking 
vehicle Vehicle-to-vehicle INJSOU in (501-514) 

Head-to-vehicle 
interior components 

Vehicle-to-pole or 
Vehicle-to-vehicle 

INJSOU ^in (451:551, 598:697) and INJSOU^="." 
Excludes: injury sources exterior to the vehicle 
compartment, as well as fire in vehicle, flying glass, 
other noncontact, air bag exhaust gases, same occupant 
contact, other occupant contact, and injuries with 
unknown source or unknown vehicle or object.  

 
Table 106. Occupant subpopulations by other (non-head) injury regions 

Injury 
Region Definition (AIS Injury Codes) 

Chest AIS Body Region=4 

Abdomen AIS Body Region=5 

Pelvis AIS codes: 8506xx (hip), 851808 (femur head fracture), 851810 (intertrochanteric femur 
fracture), 851812 (femur neck fracture), 8526xx (pelvis fracture), 8528xx (sacroilium 
fracture), 8530xx (Symphysis pubis separation), 8304xx (sciatic nerve) 

E.3.2 Side Impact Update Effectiveness 
Effectiveness estimates for subpopulations of the target populations are shown in Table 107. 
Effectiveness estimates were calculated based on the data and procedures in the Final Regulatory 
Impact Analysis for the FMVSS No. 214 update (NHTSA, 2007b), and adjusted according to the 
results of a subsequent evaluation that showed that effectiveness estimates in the FRIA were 
overestimated (Kahane, 2014a). Since the evaluation analysis was focused on fatality and did not 
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specifically analyze effectiveness in injury cases, the percentage magnitude of the overestimate 
determined in fatal cases was applied as a correction to the injury-specific effectiveness 
estimates developed based on FRIA results. 
 
For each target subpopulation in Table 107, see the referenced report section or table number for 
a detailed summary of the uncorrected FMVSS No. 214 effectiveness for that target 
subpopulation, including estimates of trickle-down of injury severity. For each of the target 
subpopulations in the tables below, effectiveness was estimated as the percentage of cases 
involving a given injury that would see a severity reduction or deletion of the injury. Calculated 
trickle-down proportions reflect the proportion of cases in which the injury severity would be 
reduced and in what proportion the injury would be prevented. For example, in an occupant case 
with an AIS 3 chest injury in the target population for the 50th occupant subpopulation for the 
pole test, Table 107 shows that effectiveness is 4.9 percent. Table 108 shows that of the 4.9 
percent of cases expected to see an injury reduction, 50 percent would be reduced to an AIS 2 
chest injury and 50 percent reduced to an AIS 0 or 1 injury.35 Application of this countermeasure 
to a case with weight of 100 would lead to replacement of the case with three pseudo-cases. This 
simple example assumes that the original retrospective NASS CDS case was not compliant with 
the FMVSS No. 214 update (α’=0) but that it would be in the projection year (β=100). In one of 
the resulting pseudo-cases, with a case weight of 95.1 (100-4.9), all other case parameters would 
be unchanged and there would still be an AIS 3 chest injury. In a second pseudo-case, with a 
weight of 2.45 (4.9x0.5), the only difference from the original case parameters would be 
replacement of the AIS 3 chest injury with an AIS 2 chest injury. In the third pseudo-case, with a 
weight of 2.45, the chest injury would be deleted.  
  

                                                 
35 In the current version of the model, harm measures are not estimated for AIS 1 injuries and injuries that trickle 
down to AIS 1 are assumed to be prevented. In future versions of the model that include harm estimation for AIS 1 
injuries such as whiplash associated injuries and mild traumatic brain injury, AIS 1 injuries will be retained for harm 
analysis. 
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Table 107. Uncorrected effectiveness by target population for FMVSS No. 214 update 

 
Side-Impact 

Type By Body Region 

Applicable occupant 
subpopulation 

 50th 5th 

214-
Applicable 

Vehicle impact 
with pole or tree 

Head 
Pole/Tree source See Appendix E.3.2.1 

E=f(injury source and delta V) Interior source 

Chest 
Table 108 
AIS 3: E=4.9% 
AIS 4+: E=10.5% 

E=0 

Abdomen 
Table 109 
AIS 3: E=94.8% 
AIS 4+: E=99.3% 

E=0 

Pelvis 
Table 110 
AIS 2: E=26.2% 
AIS 3+: E=19.4% 

Table 111 
AIS 2+: E=20.1% 

Vehicle-to-
vehicle impact 

Head 
Striking vehicle 
source 

See Appendix E.3.2.1 
E=f(impact type, injury source and delta 
V) Interior source 

Chest 
Table 112 
AIS 3: E=19.1% 
AIS 4+: E=31.0% 

Table 113 
AIS 3: E=25.5% 
AIS 4+: E=26.5% 

Abdomen 
Table 114 
AIS 3: E=80.0% 
AIS 4+: E=80.9% 

E=0 

Pelvis 
Table 115 
AIS 2: E=54.2% 
AIS 3+: E=41.3% 

Table 116 
AIS 2+: E=95.7% 

Far-side 
occupants All body regions E=0 

See discussion in Appendix E.3.2.8 

Rear seat 
(regardless of 
impact partner) 

Head 

Striking vehicle 
source 

E=0 
See discussion in Appendix E.3.2.9 

Interior source 

Chest 
Abdomen 
Pelvis 

 
After calculating the uncorrected effectiveness that applied to a given case as summarized in 
Table 107, correction factors were applied to the case-specific uncorrected effectiveness. These 
correction factors accounted for the overestimation demonstrated by a subsequent evaluation of 
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the FMVSS No. 214 update (Kahane, 2014a). The evaluation showed that the FRIA effectiveness 
in fatal cases in vehicles with curtain and torso air bags (which make up the majority of vehicles 
compliant with the updated FMVSS No. 214) was only 31.3 percent, 14 percent lower than the 
36.4 percent predicted in the FRIA. In the absence of a specific post-implementation evaluation 
of the accuracy of the injury effectiveness estimates in the FRIA or of effectiveness in specific 
impact types, a 13.7 percent correction was applied to the effectiveness of all cases in the 
FMVSS No. 214 target population. This correction was implemented by multiplying 
effectiveness in each of these cases by 0.863. 

E.3.2.1 Effectiveness and Injury Trickle-Down for Head Injuries 
Effectiveness of the side impact update for head injury was the same for occupants represented 
by the 5th and 50th occupant subpopulations. Uncorrected effectiveness values and injury-
severity trickle-down effects were estimated as a function of the head injury source and the delta 
V using a four-step process, described below. Effectiveness was corrected based on Kahane’s 
subsequent evaluation of real-world effectiveness after applying all four steps. 
 
Step 1: HIC With/Without Air Bag Estimated by Delta V for Each Head Impact Source 
Based on the head injury surface and the lateral component of the delta V in a given case, 
expected HIC (Head Injury Criterion) with and without an FMVSS No. 214-compliant air bag 
was determined using the equations in Figure 27 to Figure 29. Lateral component of delta V was 
based on the original estimate in the CDS case, reduced for pseudo-cases affected by TPMS by 
the estimated magnitude of delta V reduction (RTPMS).  
 

Head impact to pole (FRIA Appendix XI): 

 
Figure 27. Estimated relationship between delta V and HIC in head-to-pole impacts 
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Head-to-vehicle-interior impact (FRIA Appendix XI): 
Note that these relationships apply in both vehicle-to-pole and vehicle-to-vehicle crashes. 

 
Figure 28. Estimated relationship between delta V and HIC in head-to-interior impacts 

 
Head-to-striking-vehicle impact (FRIA Appendix XI): 

 
Figure 29. Estimated relationship between delta V and HIC in head-to-striking-vehicle impacts 

Step 2: Risk of Case Injury as Function of HIC  
For the expected HIC with and without an air bag (HICbag and HICnobag) estimated in step 1, the 
risk of a head injury of the severity documented in the occupant case as well as the risk of fatal 
injury was estimated with and without an air bag from the relationships in Figure 30 and 
Equations (52) and (53). 
 

 
Figure 30. Head injury risk as function of HIC 
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 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠 = 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠+ − 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠+1 (52) 

 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹 = 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹 (53) 

 where: 
RiskAISn is the estimated risk of injury of the severity n of the case head injury.  

 
Step 3: Estimation of Effectiveness  
Effectiveness was estimated as a function of the risk of injury with and without an FMVSS air 
bag (Equation (54)).  
 

 𝐸𝐸 = 1 −
(𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠�𝐻𝐻𝑅𝑅𝐶𝐶𝑂𝑂𝑃𝑃𝑠𝑠� + 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑊𝑊𝑃𝑃𝑟𝑟𝑃𝑃𝑓𝑓�𝐻𝐻𝑅𝑅𝐶𝐶𝑂𝑂𝑃𝑃𝑠𝑠�)

(𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑅𝑅𝐼𝐼𝑁𝑁𝑠𝑠(𝐻𝐻𝑅𝑅𝐶𝐶𝑠𝑠𝑟𝑟 𝑂𝑂𝑃𝑃𝑠𝑠)+𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝑊𝑊𝑃𝑃𝑟𝑟𝑃𝑃𝑓𝑓(𝐻𝐻𝑅𝑅𝐶𝐶𝑠𝑠𝑟𝑟 𝑂𝑂𝑃𝑃𝑠𝑠))
 (54) 

 
Note that this relationship is a function of the risk of fatal injury as well as of the risk of the head 
injury severity actually sustained in the original retrospective case. The inclusion of fatal risk 
was necessary since in head-to-pole and head-to-vehicle injuries, all injuries are expected to be 
fatal at some delta Vs. At these delta Vs, effectiveness would appear to be 0 at all injury levels 
since there is no way of definitively determining whether an individual head injury was fatal 
(even when a case is fatal). The inclusion of the fatal injury risk component of the calculation 
will have little effect mathematically on cases that are not fatal and cases that do not involve 
head-to-pole and head-to-vehicle contact. Effectiveness for cases in those categories that are not 
fatal may not be accurate but is expected to be better estimated with Equation (54) than by 
assigning an effectiveness of zero, which would result if fatal injury risk were not included in the 
estimate. 
 
Step 4: Injury Severity Trickle-Down  
While the effectiveness from Step 3 (after adjustment for penetration) ultimately reflects the 
proportion of the time that a given occupant’s head injury severity will be reduced, information 
from benefits evaluation for the FMVSS No. 214 update could be used to estimate the proportion 
of those affected injuries that would trickle-down to each lower level of AIS severity (Equation 
(55)). After application of effectiveness, a pseudo-case with the same injuries as the initial case 
represents the proportion of the time that the 214 update is expected to have no effect. Additional 
pseudo-cases with head injuries reduced to each lower AIS level were weighted by the product 
of effectiveness (adjusted for penetration) and the trickle-down proportion for that AIS severity 
level. 
 

 𝑇𝑇𝑐𝑐𝑊𝑊𝑐𝑐𝑏𝑏𝑃𝑃𝑊𝑊 − 𝐿𝐿𝑃𝑃𝑑𝑑𝑃𝑃 𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃𝑥𝑥 = �
𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝐴𝐴𝑅𝑅𝑇𝑇 𝑥𝑥(𝑑𝑑/ 𝑃𝑃𝑊𝑊𝑐𝑐𝑏𝑏𝑃𝑃𝑊𝑊)

∑ 𝑈𝑈𝑊𝑊𝑃𝑃𝑏𝑏𝐴𝐴𝑅𝑅𝑇𝑇 𝑊𝑊 (𝑑𝑑/ 𝑃𝑃𝑊𝑊𝑐𝑐𝑏𝑏𝑃𝑃𝑊𝑊)𝐴𝐴𝑅𝑅𝑇𝑇𝑃𝑃−1
𝑊𝑊=𝐴𝐴𝑅𝑅𝑇𝑇0−1

� (55) 

where: 
x is an AIS severity level below the initial AISn in the original retrospective case 

Trickle-down proportionx is the proportion of prevented AISn injuries that are expected to trickle-down 
to severity level x. 
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E.3.2.2 Effectiveness and Injury Trickle-Down for Pole CHEST Injuries 
Estimated AIS 4+ effectiveness was applied to AIS 4 and 5 and fatal cases (as discussed on page 
V-57 of the FMVSS No. 214 FRIA). For occupants represented by testing with the 5th dummy, 
results were equivocal (chest deflection did not show a clear improvement with thorax bags, but 
lower spine acceleration did) so, as in the FRIA, this analysis assumed thorax bags were not 
effective at preventing chest injuries for 5th size occupants in vehicle-to-pole/tree crashes in 
front near-side seating positions.  

Table 108. Effectiveness and trickle-down proportions for pole chest injuries for 50th subpopulation 
(based on data from FRIA V-49) 

 E 
Trickle-down proportion to 

lower AIS Injuries 
AIS 3 AIS 2 AIS 0-1 

AIS 4+ 10.52% 31.90% 34.05% 32.82% 
AIS 3 4.92%  50.00% 50.00% 
AIS 0-2 0%    

E.3.2.3 Effectiveness and Injury Trickle-Down for Pole ABDOMEN Injuries 
For the 5th dummy, no abdomen criterion was included in the updated rule so no effectiveness 
was estimated. 
Table 109. Effectiveness and trickle-down proportions for pole abdomen injuries for 50th subpopulation 

(based on data from FRIA V-55) 

 

E 
Trickle-down proportion to 

lower AIS Injuries 
AIS 3 AIS 2 AIS 0-1 

AIS 4+ 99.27% 3.48% 48.26% 48.26% 
AIS 3 94.76%  50.00% 50.00% 
AIS 0-2 0%    

 

E.3.2.4 Effectiveness and Injury Trickle-Down for Pole PELVIS Injuries 
The target population for pole pelvis injuries for both 50th and 5th occupant subpopulations was 
zero, so no benefits were calculated in the FRIA, but calculations will apply to any applicable 
target population in the projection model. 
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Table 110. Effectiveness and trickle-down proportions for pole pelvis injuries for 50th occupant 
subpopulation (based on data from FRIA V-58a) 

  
E 

Trickle-down proportion to 
lower AIS Injuries 

AIS 2 AIS 0-1 
AIS 3+ 19.36% 6.12% 93.88% 
AIS 2 26.22%  100.00% 
AIS 0-1 0%   

 
Table 111. Effectiveness and trickle-down proportions for pole pelvis injuries for 50th occupant 

subpopulation (based on data from FRIA V-59) 

  
E 

Trickle-down proportion to 
lower AIS Injuries 

AIS 2 AIS 0-1 

AIS 2+ 20.14%  100.00% 
AIS 0-1 0%   

E.3.2.5 Effectiveness and Injury Trickle-Down for Vehicle-to-Vehicle CHEST Injuries 
Table 112. Effectiveness and trickle-down proportions for vehicle-to-vehicle chest injuries for 50th 

occupant subpopulation (based on data from FRIA V-81) 

 E 
Trickle-down proportion to 

lower AIS Injuries 
  AIS 3 AIS 2 AIS 0-1 
AIS 4+ 30.99% 23.68% 38.16% 34.44% 
AIS 3 19.05%  50.00% 50.00% 
AIS 0-2 0%    

 

Table 113. Effectiveness and trickle-down proportions for vehicle-to-vehicle chest injuries for 5th 
occupant subpopulation (based on data from FRIA V-85) 

 E 

Trickle-down proportion 
to lower AIS Injuries 

  AIS 3 AIS 2 AIS 0-
1 

AIS 4+ 26.50% 3.31% 48.34% 47.77% 
AIS 3 25.47%  50.00% 50.00% 
AIS 0-2 0%    

 
It remains an open question whether the effectiveness estimates for the 5th occupant 
subpopulation apply to front-seat or rear-seat occupants. While it appeared from the FRIA 
chapter preliminaries that the target population was limited to the front seat, the tested values 
appear to have been estimated using a rear-seat dummy. 
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E.3.2.6 Effectiveness and Injury Trickle-Down for Vehicle-to-Vehicle ABDOMEN Injuries 
Benefits were not calculated for AIS 4+ injuries in the FRIA because the target population was 
zero, but effectiveness estimates were made and can be applied to any applicable target 
population in the projection model. 
 
For the 5th dummy tests, no abdomen injury criterion is in the updated rule, so no effectiveness 
was estimated. 

Table 114. Effectiveness and trickle-down proportions for vehicle-to-vehicle abdomen injuries for 50th 
occupant subpopulation (based on table in FRIA footnote 87, on page V-80) 

 E 
Trickle-down proportion to 

lower AIS Injuries 
AIS 3 AIS 2 AIS 0-1 

AIS 4+ 80.86% 0.99% 49.51% 49.51% 
AIS 3 80.03%  50.00% 50.00% 
AIS 0-2 0%    

 

E.3.2.7 Effectiveness and Injury Trickle-Down for Vehicle-to-Vehicle PELVIS Injuries 
Note that although data was available to calculate AIS 2 injuries, benefits were only calculated in 
the FRIA for AIS 3+. The projection model used the source data in the FRIA to calculate 
effectiveness for AIS 2 injuries as well as AIS 3+ injuries.  

 Table 115. Effectiveness and trickle-down proportions for vehicle-to-vehicle pelvis injuries for 50th 
occupant subpopulation (based on FRIA page V-81) 

  
E 

Trickle-down proportion 
to lower AIS Injuries 
AIS 2 AIS 0-1 

AIS 3+ 41.31% 2.96% 97.04% 
AIS 2 54.15%  100.00% 
AIS 0-1 0%   

 
For the 5th occupant subpopulation, only effectiveness at the AIS 3+ level was provided in the 
FRIA, without supporting test data that could be used to develop AIS 2 effectiveness. Therefore, 
the same effectiveness was assumed for AIS 2 and AIS 3+ injuries. Trickle-down for AIS 2 and 
AIS 3+ injuries was estimated to be evenly distributed between AIS 2 and AIS 0-1.   
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Table 116. Effectiveness and trickle-down proportions for vehicle-to-vehicle pelvis injuries for 5th 

occupant subpopulation (based on FRIA page V-81) 

  
E 

Trickle-down proportion 
to lower AIS Injuries 
AIS 2 AIS 0-1 

AIS 2+ 95.70%  100.00% 
AIS 0-1 0%   

 
It remains an open question whether the effectiveness estimates for the 5th occupant 
subpopulation apply to front seat or rear-seat occupants. While it appeared from the FRIA 
chapter preliminaries that the target population was limited to the front seat, the tested values 
appear to have been estimated using a rear seat dummy. 

E.3.2.8 Effectiveness Estimation for Far-Side Occupants  
Although NHTSA initially estimated that torso and head air bags would reduce far-side fatality 
by an estimated 24 percent (Kahane, 2007), an updated analysis showed that far-side fatality 
reduction with head and torso bags was likely less than the original estimate (Kahane, 2014a). In 
fact, different methods of analyzing the data did not consistently confirm definite improvement 
for far-side occupants with side air bags with the highest effectiveness identified for vehicles and 
seating positions where it would be expected to be lowest. Additionally, research engineers and a 
peer-reviewer who worked on these evaluations of the update did not expect it to be effective in 
far side impacts. Therefore, this analysis does not predict any injury reduction for far-side 
occupants as a result of FMVSS No. 214.  

E.3.2.9 Effectiveness Estimation for Rear-Seat Occupants  
Several open questions remain regarding the application of effectiveness for rear-seat occupants. 
Until resolved, rear-seat effectiveness for FMVSS No. 214 updates in the model has been set to 
zero. 
 
Globally: It needs to be confirmed that the same impact target direction can be used in the rear 
seat as in the front seat (PDOF 2-3 and 9-10). 
 
Head injuries: The FRIA indicated that it was assumed that curtain air bags were big enough to 
protect against occupants represented by a 5th percentile female test dummy in impacts with 
PDOF of 2-3 and 9-10 o’clock. Benefits for rear-seat occupants in pole crashes appeared to have 
been based on effectiveness in head-to-interior test results from FRIA Table V-30. Remaining 
questions include the following: 
 

• Is it reasonable to assume that effectiveness for rear-seat occupants in vehicle-to-vehicle 
crashes can be based on effectiveness in head-to-interior results from FRIA Table V-30? 

• Does rear seat target population include the 50th occupant subpopulation or only 5th? 
 
Chest injuries: Since all dummies in rear-seating positions reported in FRIA testing met 
requirements, no benefits were estimated for the chest and it was expected that manufacturers 
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would not include a thorax bag in the rear seat. Therefore, it was estimated that effectiveness for 
rear seat chest injuries in the projection model would be zero. 
 
Abdomen: There were no injuries in the FRIA target population so no benefit estimate was 
made. It is proposed that if there are relevant injuries in the projection model target population, 
the following data in the FRIA could be used to estimate effectiveness for rear-seat occupants: 
Table V-90 & footnote #87 (AIS 3 and AIS 4+ effectiveness for 50th male dummy in vehicle-to-
vehicle/others side crashes). No estimate could be made for 5th-applicable occupant 
subpopulation because no risk curves were available. 
 
Pelvis: From page V-95 in the FRIA, it appeared that pelvis effectiveness estimates were applied 
to both the 50th and 5th-applicable occupant subpopulations. Note that benefits seem to have 
been reduced given an assumed 75 percent passing rate for existing vehicles. It also appears that 
effectiveness for the 5th occupant subpopulation of 92.28 percent was multiplied by 25 percent 
and applied to the combined 5th and 50th occupant subpopulations. For application to the 
projection model, it needs to be confirmed whether the effectiveness associated with the 5th 
occupant subpopulation should be applied to whole population, and whether an adjustment needs 
to be made to the effectiveness to reflect the 75 percent passing rate. 

E.3.3 Relationship Between FMVSS No. 214 and Other Countermeasures  
In the case-by-case method (see Section 2.6.3), each countermeasure was applied to every 
individual case in its target population based on case variables. The target population definition 
for FMVSS No. 214, as well as its effectiveness in preventing head injuries, relied on the 
estimated delta V of the side-struck vehicle. That delta V was estimated from the original delta V 
documented in the CDS case but adjusted for the expected delta V reduction associated with the 
application of TPMS (RTPMS) to the striking vehicle. Therefore, FMVSS No. 214 must be applied 
after TPMS in the model. 
 
The FMVSS No. 214 target population is dependent on the ejection status of occupants. Since the 
SSF countermeasure can produce pseudo-cases with ejection introduced to cases whose parent 
cases did not involve ejection, FMVSS No. 214 must be applied after SSF in the model. 

E.3.4 Side Impact Update Penetration 
In most other countermeasures in the model, data on penetration was needed to estimate the 
likelihood that a case occupant had the countermeasure available in the original crash (α′), as 
well as the likelihood that the countermeasure would be available in the projected target year 
crash (βTY). For application of the side impact update, however, the presence of side impact air 
bags compliant with the update was estimated in each retrospective case using the data in the 
supplemental air bag data in the original retrospective NASS CDS case.  
 
For cases where the original retrospective case already had head and thorax air bags, it was 
assumed that a future projected version of the case would also have the countermeasure and no 
change in outcome would be expected. Effectiveness was set to zero for these cases. 

For cases where the original retrospective cases did not have head and thorax air bags, the 
relevant effectiveness from Appendix E.3.2 was adjusted using Equation (7) in this report, 
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setting α′MY to zero since it was known that the occupant did not have the countermeasure 
available. The penetration for the target projection year (βTY) was calculated as for all 
countermeasures using Equation (18), with αMY set to 0 since it was known that the original case 
did not have the countermeasure available.  
 
For cases where air bag availability was unknown in the original retrospective case, penetration 
for the target projection year (βTY) was calculated as for all countermeasures using Equation 
(18). However, the β*NOCM component in Equation (18) was calculated differently for this 
countermeasure than as defined in Equation (17). Instead it was calculated as shown in the 
following equation (Equation (56)), as a function of average values of penetration in the 
stepping-stone dataset, rather than as a function of overall penetration estimated from fleet 
penetration.  
 

 𝛽𝛽𝑁𝑁𝑟𝑟𝑃𝑃𝑀𝑀∗ =  
𝑂𝑂𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝛽𝛽𝑅𝑅𝑇𝑇 − 𝐴𝐴𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑊𝑊𝑊𝑊 𝛼𝛼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

1 − 𝐴𝐴𝐷𝐷𝑊𝑊𝑐𝑐𝑃𝑃𝑊𝑊𝑊𝑊 𝛼𝛼𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 (56) 

 
For countermeasures like those used to address FMVSS No. 214 crash conditions, where the 
presence of the countermeasure is known in some cases, Average αretro in this expression is 
estimated with the higher of: 
 

• The percentage of countermeasure-compliant cases in the MY2005+ stepping-stone 
dataset, i.e., cases with head and thorax air bags, or  

• Overall α – (Percentage of stepping-stone dataset with documented CM present), where 
overall α is calculated as in other countermeasures, summed by model year, as a product 
of the fleet penetration by model year and the percentage of the MY2005+ fleet expected 
to be in the given model year. 
 

Note that the estimation of penetration parameters for cases where air bag availability was 
unknown in the retrospective case relied on α, rather than on α’ as was used for other 
countermeasures. 
 
Estimation of the average fleet-wide penetration of compliance with the update by model year 
(αMY) was still needed for calculation of estimated overall penetration in the projection target 
years (Overall βTY). The penetration of side impact air bags (combination bags or window 
curtains) by model year, shown in Table 117, was based on NHTSA’s estimates of installation of 
FMVSS No. 214-compliant systems in passenger cars and LTVs (Simons, 2017; Simons, 
personal communication36). For each model year, a combined α value was calculated based on 
the proportion of PCs and LTVs among vehicle sales.  

                                                 
36 James F. Simons, Bowhead Logistics Solutions, LLC, Alexandria, VA, personal communication, February 2018. 
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Table 117. Penetration of FMVSS No. 214 air bags by model year (αMY) 

Model Year Sales Proportion (%) 
αPC (%) αLTV (%) αMY (%) PC LTV 

≤ 2004 48.1 51.9 

 

26.6 16.5 21.3 
2005 50.5 49.5 31.0 20.0 25.6 
2006 52.9 47.1 44.1 27.9 36.5 
2007 52.9 47.1 59.9 33.1 47.3 
2008 52.7 47.3 78.9 46.5 63.6 
2009 60.5 39.5 93.1 60.7 80.3 
2010 54.5 45.5 96.3 79.4 88.6 
2011 47.8 52.2 99.3 86.7 92.7 
2012 55.0 45.0 100.0 90.6 95.8 
2013 54.1 45.9 100.0 92.2 96.4 
2014 49.2 50.8 100.0 94.9 97.4 
2015 46.8 53.2 98.6 94.9 96.6 
2016 42.0 58.0 100.0 96.2 97.8 

2017+ Estimated to be 100.0 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of FMVSS 
No. 214 air bags among vehicles in projection crash years was estimated in Table 118. 
  

Table 118. Penetration of FMVSS No. 214 air bags in projection target years (overall βTY) 

Crash Year Overall βTY (%) 
2014 72.5 
2020 88.9 
2025 96.3 
2030 99.1 

 

E.4 FMVSS No. 216 Roof Strength Upgrade 
According to the Final Regulatory Impact Analysis, the FMVSS No. 216 Upgrade Roof Crush 
Resistance Final Rule modified the test procedures such that vehicles <=6,000 lbs GVWR would 
meet roof strength test requirements with application of force up to 3 times the vehicle’s 
unloaded weight prior to head contact with the representation of a 50th percentile male or 5 
inches of platen travel, whichever comes first (NHTSA, 2009). Previously, the requirement 
involved application of force up to 1.5 times the vehicle’s weight. The test is conducted on the 
passenger and driver sides. Vehicles with 6000 lbs<GVWR<=10,000lb (previously not subject to 
testing) must meet the requirements at 1.5 times the vehicle’s unloaded weight.  
 
The primary source for effectiveness estimates for this countermeasure was the Final Regulatory 
Impact Analysis, FMVSS No. 216 Upgrade Roof Crush Resistance (NHTSA, 2009). Target 
population studies were used to define the parameters of the included target population (Austin et 
al., 2003; Strashny, 2007).  
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E.4.1 Roof Strength Target Population 
The target population included cases defined by the following NASS CDS variables: 
 

• Non-convertible light duty vehicles  
o NASS CDS body type in (2:49) 

• Roof-involved rollover, excluding no roll, ¼ turn, and unknown number of turns  
o ROLLOVER in (2:98) 

• Belted, outboard seated occupants (including rear seat) 
o SEATPOS in (11, 13, 21, 23, 31, 33) 
o CHTYPE in (1:8) or MANUSE in (2:8, 12:18)  

• Occupants with vertical intrusion of a roof component over their seating position, 
where a roof component includes the roof itself, roof side rails, front (windshield) and 
back (backlight) headers, A and B pillars, the sun visor, as well as any roof console, 
sunroof components, or roll-bar. 

o INCOMP1-10 in (6, 7, 13, 14, 16, 19) 
o CDRIR1-10=vertical 
o INLOC1-10 in (11, 13, 21, 23, 31, 33) (outboard seat positions)  

 
Cases with the following characteristics were deleted from the target population, as they were in 
NHTSA’s benefit analysis:  
 

• Vehicles that experienced a collision with a fixed object (other than a bush, 
embankment, ditch, culvert, or the ground) to the top of the vehicle. These were 
identified in the code using the following NASS CDS variables. 

o GADEV1=T and OBJCONT in (41:42, 45, 47:52, 54:59, 62, 64)  
 
Injuries included in the target population were limited to head, neck, and face injury from a 
vertically intruding roof component into the occupant’s seating position. These injuries were 
identified using NASS CDS injury codes: 
 

• REGION90 in (1, 2, 3) or REGION90=6 and STRUSPEC=02 
• INJSOU in (3, 53, 54, 103, 104, 201, 202, 203, 204, 205, 206, 207, 208, 251) 

 
As in previous analyses,37 it was not specifically confirmed that the injury source matched the 
intruding component. It was sufficient to identify vertical intrusion over the occupant’s seating 
position and one of the above injury sources.  
 
Children were excluded from previous analyses by Austin and Strashny primarily based on the 
recommendation that children 12 and under be seated in the rear seat. Secondarily, pre-crash 
headroom for children had not been estimated (Austin et al., 2003; Strashny, 2007; Austin, 
personal communication35). It is unclear if children were excluded from FRIA calculations. 
Children were not excluded from the target population in the projection model. 
 
                                                 
37 Rory Austin, Division Chief, Office of Behavioral Research, National Center for Statistics and Analysis, National 
Highway Traffic Safety Administration, personal communication, January 13, 2017. 
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In the FRIA, fully ejected occupants were excluded from the target population since 80 percent 
of fully ejected occupants sustained their most serious injury (MAIS) outside the vehicle. 
However, since the projection model targets changes to specific injuries sustained inside the 
vehicle, ejection cases were not excluded. Only injuries sustained outside of the vehicle were 
excluded. 
 
As discussed in Appendix E.4.3, the application of SSF to the model prior to the application of 
the roof strength countermeasure created pseudo-cases in which rollovers were added to or 
removed from existing cases in the model. The resulting SSF pseudo-cases were treated as 
follows in the roof strength target population: 
 

• SSF pseudo-cases in which a rollover and a roof-contact head injury were added were 
coded to fall in the FMVSS No. 216 target population. An analysis of the retrospective 
baseline dataset determined that the average roof intrusion experienced by occupants in 
side impact crashes with a subsequent rollover was approximately 14 cm. Based on this 
data, it was estimated that occupants for which a pseudo-roof-contact head injury was 
added experienced vertical intrusion of a roof component equal to 14 cm. 

• Cases in which a rollover was added, but no roof-contact injury was added, were coded 
not to fall in the FMVSS No. 216 target population.  

E.4.2 Roof Strength Effectiveness 
Effectiveness was calculated for each injury in the target population as a function of the AIS 
severity of the injury and the magnitude of the intrusion at the location of the case occupant. 
Intrusion magnitudes for NASS CDS cases were obtained directly from NCSA.38  
 
For each occupant case, the expected reduction in intrusion at that seat position with the upgrade 
was estimated using the equations on page 43 of the FRIA (Equations (57) and (58)). These 
equations were based on a strength weight ratio (SWR) of 3 times vehicle weight for 
GVWR<=6,000 lb and 1.5 times vehicle weight for GVWR>6,000 lb. 
 

For GVWR<=6,000 lb: 𝑦𝑦 = −0.000004𝑥𝑥3 + 0.0016𝑥𝑥2 + 0.1148𝑥𝑥 + 0.7692 (57) 

For GVWR>6,000 lb: 𝑦𝑦 = −0.000005𝑥𝑥3 + 0.0020𝑥𝑥2 − 0.0435𝑥𝑥 + 1.813 (58) 

 
where: 

y=intrusion prevented (in mm), 
x=baseline intrusion in original case (in mm), and 

x-y=expected intrusion after reduction (in mm). 

 

 
For each injury in the target population, the probability of an injury of at least the severity of that 
injury was estimated as a function of intrusion (i) according to the injury risk equations derived 
from those used in the benefit calculations on page 45 of the FRIA (Equations (59) to (63)). 
Injury risk was estimated for intrusion i, calculated at the baseline intrusion (x) as well as at the 
expected reduced intrusion (x-y). 
 
                                                 
38 Gregory A. Radja, National Center for Statistics and Analysis, National Highway Traffic Safety Administration, 
personal communication, February 21, 2017. 
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 𝑃𝑃(𝐴𝐴𝑅𝑅𝑇𝑇 2 +) = 1 − 𝜙𝜙(2.21 − 0.075 × 𝑊𝑊) (59) 

 𝑃𝑃(𝐴𝐴𝑅𝑅𝑇𝑇 3 +) = 1 − 𝜙𝜙(2.81 − 0.075 × 𝑊𝑊) (60) 

 𝑃𝑃(𝐴𝐴𝑅𝑅𝑇𝑇 4 +) = 1 − 𝜙𝜙(3.06 − 0.075 × 𝑊𝑊) (61) 

 𝑃𝑃(𝐴𝐴𝑅𝑅𝑇𝑇 5 +) = 1 − 𝜙𝜙(3.18 − 0.075 × 𝑊𝑊) (62) 

 𝑃𝑃(𝐴𝐴𝑅𝑅𝑇𝑇 6) = 1 − 𝜙𝜙(3.24 − 0.075 × 𝑊𝑊) (63) 

 where: 
Φ() is the standard normal cumulative distribution, and 

I=intrusion in inches. 
 

 
Effectiveness for a given injury of a specified severity n can then be calculated using Equation 
(64) as a function of the probability of an injury of at least that severity at baseline intrusion 
(p(i=x)) and at reduced intrusion (p(i=x-y)).  
 
 𝐸𝐸 = 1 −  𝑠𝑠𝐼𝐼=𝑥𝑥−𝑦𝑦(𝑅𝑅𝐼𝐼𝑁𝑁 𝑠𝑠+)

𝑠𝑠𝐼𝐼=𝑥𝑥(𝐴𝐴𝑅𝑅𝑇𝑇 𝑠𝑠+)  (64) 

In practical terms, weights for the resulting pseudo-cases that accounted for the percentage of 
injuries at the given severity level that remained unchanged, as well as the percentage of injuries 
that trickled down to each lower-severity level, are shown in Table 119. 

Table 119. Multipliers for effectiveness in roof crush trickle-down analysis  
where p(AIS n) is estimated as a function of the reduced intrusion 

  Injury in Pseudo-Case 

  No Injury AIS 2 AIS 3 AIS 4 AIS 5 AIS 6 

O
ri

gi
na

l I
nj

ur
y 

AIS 2 E 1-E     

AIS 3 𝐸𝐸 ∗ 1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 2)
1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 3+) 𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 2)

1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 3+) 1-E    

AIS 4 𝐸𝐸 ∗ 1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 2+)
1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 4+) 𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 2)

1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 4+) 𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 3)
1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 4+) 1-E   

AIS 5 𝐸𝐸 ∗ 1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 2+)
1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 5+) 𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 2)

1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 5+) 𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 3)
1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 5+) 𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 4)

1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 5+) 1-E  

AIS 6 𝐸𝐸 ∗ 1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 2+)
1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 6)  𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 2)

1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 6) 𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 3)
1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 6) 𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 4)

1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 6) 𝐸𝐸 ∗ 𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 5)
1−𝑠𝑠(𝑅𝑅𝐼𝐼𝑁𝑁 6) 1-E 
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For example, for an AIS 3 injury in the target population with 8” of intrusion in the original case 
for a vehicle <=GVWR of 6,000 lb.: 
 

Original intrusion: 𝒙𝒙 = 𝟐𝟐𝟏𝟏𝟐𝟐 𝒎𝒎𝒎𝒎 = 𝟖𝟖" 
Intrusion prevented: 𝒚𝒚 = 𝟓𝟓𝟓𝟓.𝟓𝟓 𝒎𝒎𝒎𝒎 = 𝟐𝟐.𝟐𝟐𝟐𝟐" 

Reduced intrusion: 𝒙𝒙 − 𝒚𝒚 = 𝟓𝟓.𝟕𝟕𝟕𝟕" 
p(AIS 3+) @ 8”: 1 − 𝜙𝜙(2.81 − 0.075 × 𝑊𝑊) = 0.01355 
p(AIS 3+) @ 5.77”: 1 − 𝜙𝜙(2.81 − 0.075 × 𝑊𝑊) = 0.00872 
p(AIS 2+) @ 5.77”: 1 − 𝜙𝜙(2.21 − 0.075 × 𝑊𝑊) = 0.03776 
p(AIS 2) @ 5.77”: p(AIS 2 +) −  p(AIS 3+) = 0.02904 

𝐸𝐸 = 1 −  𝑠𝑠𝐼𝐼=𝑥𝑥−𝑦𝑦(𝑅𝑅𝐼𝐼𝑁𝑁 𝑠𝑠+)
𝑠𝑠𝐼𝐼=𝑥𝑥(𝑅𝑅𝐼𝐼𝑁𝑁 𝑠𝑠+) = 1 − 0.00872

0.01355
=0.3565 

Weights for resulting pseudo-cases: 
with AIS 3 injury (unchanged): weight = w*(1-E) = w*0.6435 
with AIS 2 injury (reduced): weight = w*E*(p(AIS 2))/(1-p(AIS 3+)) = w*0.0105 
with no injury or AIS 1 injury: weight = w*E*(1-p(AIS 2+))/(1-p(AIS 3+)) = w*0.3461 

E.4.3 Relationship Between Roof Strength and Other Countermeasures  
In the case-by-case method (see Section 2.6.3), each countermeasure is applied to every 
individual case in its target population based on case variables. As discussed in Appendix C.3.3, 
the application of SSF creates pseudo-cases in which rollovers are added to or removed from 
existing cases in the model. These changes have the potential to move a case into, or out of, the 
target population for the roof strength countermeasure. Therefore, the SSF countermeasure must 
be applied before the roof strength countermeasure in the model. The target population definition 
in the roof strength countermeasure specifically addresses criteria for inclusion of the SSF 
rollover pseudo-cases in the roof strength countermeasure. 

E.4.4 Roof Strength Penetration 
The penetration of roof strength upgrades by model year for 2005 to 2016, shown in Table 120, 
was estimated based on NHTSA’s estimates of installation of FMVSS No. 216-compliant 
systems in passenger cars and LTVs (Simons, 2017; Simons, personal communication39). For 
2017 and later, αMY was estimated to be 100 percent for PCs. For LTVs, αMY was linearly 
extrapolated from 2012 to 2016 data.  

                                                 
39 James F. Simons, Bowhead Logistics Solutions, LLC, Alexandria, VA, personal communication, February 2018. 
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Table 120. Penetration of roof strength upgrade (αMY) 

Model Year αMY (%) 
PCs LTVs 

≤ 2011 18.0 29.0 
2012 25.5 29.0 
2013 72.1 37.1 
2014 89.2 49.1 
2015 95.8 64.5 
2016 98.6 76.7 
2017 100.0 87.9 

2018+ 100.0 100.0 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of the roof 
strength upgrade among vehicles in projection crash years was estimated in Table 121. 

Table 121. Penetration of roof strength upgrade in projection target years (overall βTY) 

Crash Year Overall βTY (%) 
PCs LTVs 

2014 30.0 31.3 
2020 64.6 57.3 
2025 86.1 79.8 
2030 96.3 93.6 

E.5 NCAP 2011 Enhancement (Frontal and Side Impact Tests) 
NCAP frontal and side impact test procedures were enhanced for 2011 model year vehicles, 
starting in calendar year 2010. In their 2015 ESV paper, Park et al. tracked the progression of 
measured injury risk estimates in NCAP testing by body region for each of the components of 
the updated NCAP procedures. For this model countermeasure, the change in the ESV-reported 
injury risk values in the frontal rigid barrier test, the MDB test, and the pole test were each used 
to estimate the “effectiveness” of the NCAP 2011 update. In reality, this effectiveness estimate 
did not really evaluate the isolated effect of the NCAP update, but it captured all improvements 
made during that period for any reason. Since all these changes, regardless of motivation, will 
have an effect on future safety, no effort was made to exclude improvements that were not 
motivated by the NCAP update. However, for simplicity and consistency with terminology for 
other countermeasures, the sum effect of all observed changes was identified as the 
“effectiveness” of NCAP 2011.  
 
The Park et al. study compared NCAP test results for MY 2011 and MY 2014/2015 vehicles. 
However, it should be noted that updates to frontal and side impact regulations were also being 
phased in during that period. For the frontal test, the phase-in for the increase in test speed for the 
5th female in the FMVSS No. 208 rigid barrier was not fully phased-in until 2012. For the MDB 
and pole tests, the phase-in for updates to FMVSS No. 214 was not complete until 2013. This 
overlap in the NCAP comparison period and the phase-in periods for the FMVSS updates meant 
there was a potential for double-counting the improvements made to meet the FMVSS 
requirements and the improvements captured by enhanced NCAP testing. However, review of 
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NCAP 2011 test results showed that MY 2011 vehicles met the FMVSS No. 208 and 214 
requirements in the large majority of 2011 enhanced NCAP tests. This result supported that 
nearly all improvement in enhanced NCAP testing between 2011 and 2015 was beyond that 
estimated in the effectiveness estimates for FMVSS No. 208 and 214 updates in the projection 
analysis. Therefore, for the purpose of the projection model, the effectiveness of FMVSS updates 
and the improvement of enhanced NCAP results were applied independently in the projection 
model, under the assumption that double-counting of improvement from these countermeasures 
would be negligible.  

E.5.1 NCAP 2011 Target Population 
NCAP testing applies to vehicles up to 10,000 pounds GVWR, so all CDS-eligible vehicles were 
included in the overall target population. The target populations for each individual NCAP test 
were defined as follows. 

E.5.1.1 Frontal Rigid Barrier Test 

Impact type:  

• Target population limited to perpendicular frontal impacts based on the strategy used 
to estimate benefits for rigid barrier testing in FMVSS No. 208 (NHTSA, 2000), and 

• Defined using NASS CDS variables: DOF 11-1 (and 31, 51, etc.) & GAD1=F & 
SHL1=D, Z, Y. 

 
Right front passenger:40 

• Defined using NASS CDS variable SEATPOS=13 only. 
 
Occupants relevant to 5th dummy: 

• Limited to adults age 13+, and 
• Since improvements made to protect the 5th female in the right front seat would 

likely also affect taller occupants and there were no test results available for a 50th 
ATD, the target population for occupants relevant to the 5th dummy included 
occupants of all heights in the right front seat position.  

Belted: 

• Belted occupants only, and 
• Although it was possible that unbelted occupants would also benefit from 

improvements, no estimates of effectiveness were available for unbelted occupants. 
 

 

                                                 
40 Park’s unpaired analysis of MY 2011 versus MY 2014-2015 vehicles showed that the driver, on average, had no 
statistically significant improvement in combined injury probability. While some injury regions appeared to 
decrease in risk, others had small increases in injury risk. For the purpose of this interim analysis, no change to 
frontal protection in the driver seat position was estimated as a result of the NCAP 2011 frontal enhancement. 
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Delta V: 

• All crashes with delta V of 35 mph or less were included in the target population. 
While the estimated injury reductions may not apply at much lower severity and 
injury reductions would also occur at higher severities, this target population 
limitation matched the strategy used to estimate benefits for rigid barrier testing in 
FMVSS No. 208 (NHTSA, 2000). 

• The delta V estimate made in each original source case using NASS CDS 
reconstruction variables (DVTOTAL, DVLONG, DVEST, and BEV) was adjusted 
based on the reduction expected with the application of TPMS (model variable: 
RTPMS). This adjustment was coded as follows:  

o (DVTOTAL – RTPMS) or (DVLONG – RTPMS)<=56.3 km/h, or  
o BEV – RTPMS<=56.3 km/h, or 
o DVEST in (1-4), as well as those coded as unknown, since the large majority 

of crashes have a delta V less than 56.3 km/h.  

E.5.1.2 MDB Test 
Impact type: Impact type limitations were based on those used in the benefits estimation for 
FMVSS No. 214, since those tests are run at impact angles that are similar to the NCAP MDB 
test. The increased impact speed in NCAP testing is not expected to change the delta V target 
population used for the FMVSS No. 214 analysis, since that range was based on the estimated 
typical side impact deployment thresholds and the delta V at which side air bags would be 
expected to bottom-out, rather than on test speed. Inclusion criteria for the target population were 
defined as follows: 
 

• Lateral component of delta V 12-25 mph, based on estimates made in the original 
CDS case, adjusted for expected reduction after application of TPMS,  

• Cases with rollover as first event excluded,  
• Side impacts identified using NASS CDS variables: GAD1=R, L, and SHL1=P, Y, Z, 

and DOF1=2-3, 9-10, and 
• Impact partner identified as vehicle-to-vehicle or other roadside object using the 

NASS CDS variable OBJCONT1=1-11, 43-44, 46-49, 54-59, 64, 68-71, 77-78. 
 

Occupants: Occupants included in the target population for the NCAP MDB test, based on the 
limitations included in the FMVSS No. 214 MDB target population, were defined as follows: 
 

• Nearside outboard occupants only, in the front seat and first rear seat (note that 
NCAP typically reports to consumers that the ratings for the driver and left rear 
passenger apply to the front and rear passengers on the right side of the vehicle also), 

• Not limited by belt use,  



E-32 

• Complete ejections excluded using the NASS CDS variable OA/Ejection^=1,41  
• Only occupants age 13+, and 
• Although the NCAP test uses a 50th percentile dummy in the driver’s seat and a 5th 

percentile dummy in the rear seat, adult occupants of all heights were included in the 
target population in both seat positions. Target populations in the modeled 
countermeasure were only separated for occupants of heights corresponding to 
different dummies if effectiveness results were available for both dummies. 

E.5.1.3 Pole Test 
Impact type: Target population limitations on impact type were based on those used in benefits 
estimation for the pole test in FMVSS No. 214, and were defined in the model as follows: 
 

• Lateral component of delta V 12-25 mph, based on estimates made in each original 
NASS CDS source case, adjusted for expected speed reduction with application of 
TPMS,  

• Rollover as first event excluded,  
• Side impacts, defined using NASS CDS variables: GAD1=R, L, and SHL1=P, Y, Z, 

and DOF1=2-3, 9-10, and  
• Vehicle-to-pole, or vehicle-to-tree impacts identified using the NASS CDS variable 

OBJCONT1=41, 42, 45, 50, 51, 52, 53. 
 
Occupants: Occupants included in the target population for the NCAP pole test, based on the 
limitations included in the FMVSS No. 214 MDB target population, were defined as follows: 
 

• Drivers and right front passengers, identified using the NASS CDS variable 
SEATPOS in (11, 13) (while the NCAP tests are not performed on the passenger side, 
NCAP typically reports to consumers that the ratings for the driver apply to the front 
passenger on the right side of the vehicle also),  

• Nearside outboard occupants only,  
• Not limited by belt use,  
• Only occupants age 13+,  
• In the absence of test results for a 50th ATD, included occupants of all heights in the 

target population for the 5th female dummy, and 
• Complete ejections excluded using the NASS CDS variable OA/Ejection^=1. 

                                                 
41 As discussed in Section A.3.2, the application of SSF creates pseudo-cases in which rollovers and ejections are 
added to or removed from existing cases in the model. The pseudo-cases in which an ejection is added by the 
application of SSF will be excluded from the MDB population. The pseudo-cases in which an ejection is deleted by 
the application of SSF will not be excluded from the MDB population based on ejection status (but they could be 
excluded based on another target population limitation). 
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E.5.2 NCAP 2011 Effectiveness 
The percentage improvement in average injury risk per body region from 2011 to 2014/2015 was 
used as an estimate of effectiveness for each test mode.  
 
The effectiveness estimates are tabulated by body region for the 2011 updated NCAP frontal 
rigid barrier test in Table 122. Effectiveness estimates by test mode and seat position for the 
enhanced NCAP side MDB and pole tests are found in Table 123 to Table 125. “Combined” 
estimates of injury probability in each table are drawn from Park et al.’s calculated values of the 
risk of injury in any body region. 
 
Table 122. Average probability of AIS 3+ injury by body region for front passengers in frontal NCAP test 

(Park et al., 2015) (along with calculated percentage change from 2011 to 2014/2015) 

 2011 2014/2015 Change 
Percentage 

Improvement 
Effectiveness 

Head 0.015 0.009 0.60% 40.0% 
Neck 0.104 0.082 2.20% 21.2% 
Chest 0.018 0.015 0.30% 16.7% 
Leg 0.022 0.015 0.70% 31.8% 
Combined 0.151 0.117 3.40% 22.5% 

 
Table 123. Average probability of AIS 3+ injury by body region for drivers in side MDB NCAP test (Park 

et al., 2015) (along with calculated percentage change from 2011 to 2014/2015) 
 2011 2014/2015 Change Percentage 
Head 0.001 0.001 0.00% 0.0% 
Chest 0.07 0.04 3.00% 42.9% 
Abdomen 0.027 0.014 1.30% 48.1% 
Pelvis 0.006 0.003 0.30% 50.0% 
Combined 0.099 0.0057 9.33% 94.2% 
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Table 124. Average probability of AIS 3+ injury by body region for rear passengers in side MDB NCAP 
test (Park et al., 2015) (along with calculated percentage change from 2011 to 2014/2015) 

 2011 2014/2015 Change Percentage 
Head 0.009 0.007 0.20% 22.2% 
Pelvis 0.079 0.04 3.90% 49.4% 
Combined 0.087 0.047 4.00% 46.0% 

 
Table 125. Average probability of AIS 3+ injury by body region for driver in side pole NCAP test (Park et 

al., 2015) (along with calculated percentage change from 2011 to 2014/2015) 
 2011 2014/2015 Change Percentage 
Head 0.024 0.014 1.00% 41.7% 
Pelvis 0.117 0.05 6.70% 57.3% 
Combined 0.137 0.063 7.40% 54.0% 

 
The test mode effectiveness estimates reflect a percentage improvement in the risk of injury to a 
given body region. For example, a test procedure demonstrating a 20 percent improvement in 
AIS 3+ head injury risk is expected to reduce head injuries such that there are expected to be 20 
percent fewer occupants with AIS 3+ head injury in the target population.  

 
There is no information available to estimate the trickle-down effects of preventing AIS 3+ 
injuries. In the case of AIS 5 head injuries, for example, it is unknown how many are likely to be 
reduced to AIS 4 or AIS 3 injuries. Therefore, it was estimated that for a given body region 
effectiveness reflects the percentage of all occupants with AIS 3+ injuries in that body region 
whose injuries would be reduced to AIS 2 severity. This approximation is conservative in that it 
neglects the possibility that some injuries may be reduced to an AIS 1 level or prevented 
altogether. It also neglects trickle-down of AIS 5 or 4 injuries to the AIS 4 or 3 severity level.  
 
Body regions for applying each effectiveness estimate were estimated broadly (Table 126), 
potentially covering more injuries than specifically covered by injury risk curves. Future 
consideration should be given to further refinement of these targeted injury regions. 

Table 126. Definition of body regions for effectiveness estimates 

 AIS-Coded Definition of Body Region 
Head REGION90=1 

Neck REGION90=3 or 
REGION90=6 and STRUSPEC=02 

Chest REGION90=4 
Abdomen REGION90=5 
Leg REGION90=8 

Pelvis 
AIS codes: 8506xx (hip), 851808 (femur head fracture), 851810 (intertrochanteric 
femur fracture), 851812 (femur neck fracture), 8526xx (pelvis fracture), 8528xx 
(sacroilium fracture), 8530xx (Symphysis pubis separation), 8304xx (sciatic nerve) 
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E.5.3 Relationship Between NCAP 2011 and Other Countermeasures  
In the case-by-case method (see Section 2.6.3), each countermeasure is applied to every 
individual case in its target population based on case variables. The target population for the 
improvements associated with the NCAP enhancements made in 2011 relies on the estimated 
delta V of the struck vehicle. That delta V is estimated from the original delta V documented in 
the CDS case but adjusted for the expected delta V reduction associated with the application of 
TPMS (RTPMS) to the striking vehicle as discussed in Appendix D.2. Therefore, NCAP 2011 
must be applied after TPMS in the model. 
 
The NCAP 2011 target population is dependent on the ejection status of occupants. Since the 
SSF countermeasure can produce pseudo-cases with ejection introduced to cases whose parent 
cases did not involve ejection, the NCAP 2011 countermeasure must be applied after SSF in the 
model. 

E.5.4 NCAP 2011 Penetration 
Although it is probable that some vehicle models continued to improve after 2014/2015, when 
only 42 percent of vehicles had a 5-star rating, the 2014/2015 level of performance was used as 
the “final” performance level for improvements in response to the 2011 NCAP enhancement.  
 
Vehicle improvements in enhanced NCAP tests occurred incrementally between 2011 and 2015. 
Penetration for enhanced NCAP was defined somewhat differently than for other more discrete 
countermeasures since the introduction of enhanced NCAP improvements into the fleet was a 
function of both gradual decreases in injury risk reflected by improving test scores between 2011 
and 2015, as well as the gradual increase in the percentage of the fleet covered or described by 
the NCAP test results. Therefore, the estimation of penetration involved: 
 

(1) Estimating the maximum “penetration” of the decreased injury risk measured in 
enhanced NCAP between MY 2011 and 2015, i.e., the percentage of MY 2015 and later 
vehicles to which the average 2011 to 2015 performance improvement applies, and  

(2) Estimating the rate of incremental magnitude of those decreases in injury risk for model 
years between 2011 and 2015. 

 
Values for maximum penetration and incremental penetration were estimated as follows: 
 
Maximum penetration: Published estimates on past coverage of the fleet by NCAP testing 
indicated that approximately 81 to 87 percent of the vehicle fleet was rated annually by NCAP 
(Hershman, 2001; NHTSA, 2011c; NHTSA, 2012). According to personal communication with 
the NCAP team,42 the percentage of the new vehicle fleet tested using enhanced NCAP based on 
projected sales volume increased from 63 percent in 2011 to 88 percent in 2015. Therefore, for 
the purpose of the projection model, it was estimated that the average improvement in tested 
vehicles between 2011 and 2014/15 reflected average performance improvements in about 85 
percent of vehicles in the fleet in MY 2015 and later. Therefore, the maximum “penetration” of 
                                                 
42 Jennifer N. Dang, National Center for Statistics and Analysis, National Highway Traffic Safety Administration, 
personal communication, March 2017. 
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average NCAP-measured improvements (relative to 2011 performance) was estimated to be 85 
percent.  
 
Incremental penetration: For the purpose of the projection model, the combined improvement 
in test performance and increase in coverage of the fleet by NCAP testing between 2011 and 
2015 was approximated by linear incremental “penetration” of enhanced NCAP-associated 
changes each year between 2011 and 2015. The resulting penetration estimates by model year 
are shown in Table 127. 

Table 127. Estimated incremental penetration of improvements associated  
with NCAP 2011 update (αMY) 

Model Year αMY (%) 
2011 and earlier 0 

2012 21 
2013 43 
2014 64 

2015 and later 85 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of 
improvements in passenger safety associated with the NCAP 2011 update among vehicles in 
projection crash years was estimated in Table 128. 

Table 128. Penetration of improvements in passenger safety associated with NCAP 2011 update in 
projection target years (overall βTY) 

Crash Year Overall βTY (%) 
2014 11.6 
2020 48.0 
2025 70.3 
2030 81.1 

E.6 FMVSS No. 226 Ejection Mitigation Update 
New ejection performance requirements were introduced to reduce partial or complete ejection 
through side windows in vehicle crashes (NHTSA, 2011b). According to the Final Regulatory 
Impact Analysis for the new requirements in 2011, it was believed that curtain air bags would be 
used to pass the test. The primary source for target population and effectiveness estimates was 
the Final Regulatory Impact Analysis for FMVSS No. 226 Ejection Mitigation (NHTSA, 2011a), 
and Kahane’s post-implementation evaluation of fatality effectiveness (Kahane, 2014a). 

E.6.1 Ejection Mitigation Target Population 
The basic target population includes seriously injured occupants in rollovers or side planar 
crashes (or both), ejected through side windows in rows 1 to 3 or the cargo area behind the 
second row. 
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Basic overall requirements for an occupant to be in target population, with corresponding 
NASS CDS variables: 
 

• Occupant in rows 1-3: SEATPOS in (11:39),  
• Non-convertible light-duty vehicle: BODYTYPE in (2:49),  
• Completely or partially ejected occupant: EJECTION in (1:3), and 
• Occupant ejected through 226-relevant window: EJCTMED in (3, 4, U) and EJCTAREA 

in (2:5, 8). 
 

Exclusions: 
 

• Occupant in FMVSS No. 214 target population as defined in Table 101, 
• Occupant belted AND completely ejected (indicative of potentially intractable severity), 

identified using the following NASS CDS variables: CHTYPE in (1:8) or MANUSE in 
(2:8, 12:18) and EJECTION=1. 

 
Effectiveness was assigned to different subpopulations within the target population based on the 
following variables, which will be defined in detail in this summary. 
 
Fatal: 
 

• Fatal 
• Not fatal 

 
Impact type:  
 

• Rollover without side impact 
• Side impact without rollover 
• Side impact with subsequent rollover 

 
Belt use:  
 

• Belted/child restraint 
• Unbelted/no child restraint 

 
Delta V of side impact: 
 

• 12-25 mph 
• Not 12-25 mph 

 
Age: 
 

• 0-12 
• 13+ 
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Ejection degree: 
 

• Partial ejection 
• Complete ejection 

E.6.1.1 Definition of Variables Needed to Identify Target Population and Subpopulations 
Fatality: Fatality status in each case is determined based on the fatality status of the occupant in 
the original NASS CDS case as well as on the reduced probability of fatality given the 
countermeasures that have already been applied in earlier stages of the model. Cases with a 
probability of fatality (using the attributable fatality method) of less than 1 percent after 
application of other countermeasures are classified as not fatal (fatal226=0) for the application of 
this countermeasure. All other cases with non-negligible probability of fatality will be separated 
into two pseudo-cases (one fatal and one not fatal) prior to application of this countermeasure 
using the methods described in Section 2.7.1.1. 

 
Vehicle type: A binary variable (VehTP) for cases where the vehicle type was in the target 
population for FMVSS No. 226 was assigned to each case based on the NASS CDS variable 
BODYTYPE (Table 129).  

Table 129. FMVSS No. 226 vehicle type definition for target population 

CDS Variable BODYTYPE FMVSS No. 226 Relevant Vehicle Type 
Model variable: VehTP 

2-49 1 
All others 0 

 
Relevant seat position: Occupants were coded as being in a seat position in the target 
population (i.e., occupant rows 1-3) with the model variable SeatTP as defined in the table 
below. Occupants in unknown seat positions were distributed between relevant and non-relevant 
seat positions proportional to the distribution of occupants in the dataset with known seat 
positions in the first three rows as calculated in Table 130. Instead of a binary variable, SeatTP is 
set to 0.9984 in cases where seat position is unknown, since 99.84 percent of weighted occupants 
with known seat position were seated in the first three rows among cases in the baseline 
retrospective dataset. 

Table 130. FMVSS No. 226 seat position definition for target population 

Variable FMVSS No. 226 Relevant Seat Position 
Model variable: SeatTP 

SEATPOS=11:39 1 
SEATPOS=U. 0.9984 

All others 0 
 
Ejection status: For inclusion into the target population, all occupants coded with complete 
ejection, partial ejection, or ejected with degree unknown were set to EjectTP=1 (Table 131). For 
assignment to a subpopulation of partial or completely ejected occupants, those with unknown 
ejection degree were distributed between the partial and complete groups according to the 
frequency of complete versus partial ejections in cases where it was known. Among ejection 
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cases in the current baseline retrospective dataset, 55.88 percent of weighted occupant cases 
where degree of ejection was known were complete ejection cases (Table 132).  

Table 131. FMVSS No. 226 ejection definition for target population 

Variable EJECTION FMVSS No. 226 Relevant Ejection 
Model variable: EjectTP 

1 – complete 1 
2 – partial 1 
3 – degree unknown 1 
All others 0 

 
Table 132. FMVSS No. 226 degree of ejection definition for target population 

Variable EJECTION Subpopulation Variable 
Model variable: CompleteEjct 

1 – complete 1 
2 – partial 0 
3 – degree unknown 0.5588 

 
Ejection through 226-applicable window: For inclusion in the target population, occupants 
must be ejected through a side window in rows 1 to 3 or the cargo area behind the second row. 
Based on review of the Preliminary Regulatory Impact Analysis (PRIA), Final Regulatory 
Impact Analysis, and NASS CDS coding manual, there was considerable ambiguity in the 
binning of occupants by ejection route. The definition of the categories to be used in the 
projection model is described in Table 133. Categories with RouteTP=1 indicate cases to be 
included in the target population and RouteTP=0 indicates those excluded from the target 
population. Categories where ejection area or medium were unknown are listed with a 
percentage that corresponds to the distribution of these variables among known cases. The 
percentage of cases with unknown parameters that are in the target population was estimated to 
match the percentage of cases with known parameters that were in the defined target population. 
Based on glazing ejection cases in the baseline retrospective dataset, 79.97 percent of weighted 
cases with known ejection area were documented as being ejected through an ejection area in the 
target population. Among ejection cases through windows in the target population, 84.67 percent 
were through glazing areas and were therefore in the target population for ejection medium.  
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Table 133. FMVSS No. 226 ejection route definition for target population 

 FMVSS No. 226 Relevant Ejection Route 
Model variable: RouteTP 

  

NASS CDS Variable 
EJCTMED 

3 – Fixed Glazing 
4 – Nonfixed 

Glazing 

0,1,2,5,8, U – Unknown 

NASS CDS Variable 
EJCTAREA 

   

1 – Windshield 0 0 0 
2 – Left front 1 0 0.8467 
3 – Right front 1 0 0.8467 
4 – Left rear 1 0 0.8467 
5 – Right rear 1 0 0.8467 
6 – Rear 0 0 0 
7 – Roof 0 0 0 
8 – Other area 1 0 0.8467 
9 – Unknown if ejected 0 0 0 
99 – Unknown area 0.7997 0 0.7997*0.8467 

 
Global FMVSS No. 226 target population variable (TP226): As shown in Equation (65), a 
single variable (TP226) was used to flag cases that met the basic inclusion criteria for FMVSS 
No. 226. This variable value ranged from 0 (for cases that were definitely not in the target 
population) to 1 (for cases that were definitely in the target population). This variable took on a 
value between 0 and 1 for cases where one or more of the target population requirements was 
unknown, reflecting the estimated probability that the case was in the target population.  
 
 𝑇𝑇𝑃𝑃226 = 𝐿𝐿𝑊𝑊ℎ𝑇𝑇𝑃𝑃 × 𝑇𝑇𝑊𝑊𝑃𝑃𝑡𝑡𝑇𝑇𝑃𝑃 × 𝐸𝐸𝑖𝑖𝑊𝑊𝑐𝑐𝑡𝑡𝑇𝑇𝑃𝑃 × 𝑈𝑈𝑃𝑃𝑃𝑃𝑡𝑡𝑊𝑊𝑇𝑇𝑃𝑃 (65) 

 

where: 
TP226 is an indicator variable corresponding to the probability that the case is in 

the target population, 
VehTP is defined in Table 129, 
SeatTP is defined in Table 130, 

Eject TP is defined in Table 131, and 
RouteTP is defined in Table 133. 

 

 
Crash types – rollover: According to the FRIA, rollover crashes included crashes where 
rotation about the vehicle longitudinal axis occurred during the crash sequence, regardless of 
whether or not a planar impact or rotation about some other vehicle axis occurred. End-over-end 
crashes (without longitudinal axis rotation) were excluded. These criteria were coded using the 
NASS CDS variable EV/OJBCONT=Rollover Overturn.  
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Crash types – side impact: According to the FRIA, planar side crashes were defined by using 
primary or first area of damage as a surrogate for impact direction. For this study, GAD1 in (R, 
L) was defined as a side impact, coded using the NASS CDS variable EV/GAD1EV in (R, L). 
 
Delta V of side impact: A binary variable was coded for cases where side impact delta V was 
between 12 and 25 mph (Table 134). Delta V was coded as in the countermeasure for FMVSS 
No. 214, using NASS CDS variables: GV/DVLAT=19 to 40 km/h or GV/DVEST=3 (24<delta 
V<40). Cases in the delta V target population range were assigned a value of 1 for the model’s 
delta V target population variable LATDeltaV. Cases where delta V was unknown were assigned 
a value that corresponded to the percentage of ejected occupants in the baseline retrospective 
dataset with known lateral delta V who were within the targeted delta V range.  

Table 134. FMVSS No. 226 lateral delta V definition for target population 

 Subpopulation Variable 
Model variable: LATDeltaV 

12-25 mph 1 
Not 12-25 mph 0 
Unknown if 12-25 mph 0.3261 

 
Inclusion of rollover/side impact crashes: For the purpose of this analysis, three categories of 
crashes were included in the target population (coded as a function of the NASS CDS variables: 
ACCSEQ, OBJCONT, GADEV1): 
 

• Rollover without side impact, 
• Side impact without rollover, and 
• Side impact with subsequent rollover. 

 
In 214 target population: Cases included in the FMVSS No. 214 target population were 
excluded from the current target population. 

N 
Belted complete ejections: As in the FRIA (page 55), completely ejected belted occupants in 
rollover crashes were excluded from the target population, based on the assumption that the 
rollover was very violent given the structure failure required to allow ejection of belted 
occupants, i.e., these rollovers were assumed to be catastrophic. Only cases where ejection status 
and belt use were known were included in this group, so no distributed variables were used to 
estimate this value. 
 
Note also that the FRIA reasoned that a similar percentage of complete ejection unbelted 
fatalities were also likely to be associated with catastrophic crashes. Based on the ratio of such 
belted cases, it was estimated that 2.3 percent of completely ejected unbelted fatalities should be 
excluded from the target population. In the current analysis, this 2.3 percent adjustment for 
completely ejected unbelted fatalities was made as an adjustment in effectiveness rather than in 
the target population. See the next page.  
 
Age: Age was used to define a subpopulation of the target population for application of variable 
effectiveness (Table 135). 
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Table 135. Age subpopulation variable 

 Subpopulation Variable 
Model variable: Adult 

Age<13 0 
Age≥13 1 

 
Restraint use: Restraint use was defined as a variable (Belted) to identify a subpopulation of the 
target population for application of variable effectiveness. When restraint use was unknown, this 
variable was assigned a value of 0.3636 to reflect the proportion of ejected occupants in the 
baseline retrospective target population with known restraint use who were determined to be 
restrained (Table 136). 

Table 136. Restraint use subpopulation variable 

NASS CDS variables Subpopulation Variable 
Model variable: Belted 

CHTYPE=1-8 
MANUSE=2-8, 12-18 
ABELTUSE=1 

1 

MANUSE=0-1 0 
Belt/restraint use unknown 0.3636 

 
Pseudo-cases created by the application of SSF: As discussed in Appendix E.6.3, the application 
of SSF creates pseudo-cases in which rollovers and ejections are added to or removed from existing 
cases in the model. The resulting pseudo-cases created by the application of SSF could have a 
different FMVSS No. 226 target population status than their parent cases prior to the application 
of SSF. The assignment of subpopulation variables to the SSF pseudo-cases is summarized in 
Table 137.  

Table 137. Pseudo-cases created by the application of SSF 
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Possible pseudo-cases created by 
application of SSF Impact on the case’s inclusion in FMVSS No. 226 

target population and subpopulation variables 
(Defined in terms of model variables) 

Rollover 
added or 
removed? 

Ejection added 
or removed? 

No change No change No change from parent case 
Rollover added No change Crash category=Side impact with subsequent rollover 

Rollover added Ejection added 

EjctTP=1 
CompleteEjct=1 
RouteTP=0.7997*0.8467 
Crash category=Side impact with subsequent rollover 

Rollover 
removed 

Ejection removed 
(if ejection 
occurred) 

EjctTP=0 
CompleteEjct=0 
Crash category=Side impact without rollover 

 
Final definition of FMVSS No. 226 subpopulations: The variables defined above were used to 
categorize cases into subpopulations for the purpose of applying effectiveness values that were 
available for different types of cases and occupants in the target population (Table 138). 

Table 138. Subpopulations of target population 

Rollover, no side impacts 
Side impacts followed by rollovers, excluding 12-25 mph 
Side impacts, w/ subsequent rollovers, 12-25 mph 
Side impacts, no rollovers, 12-25 mph 
Side impacts, no rollovers, children (0-12 yrs), partial and complete, 12-25 mph 

 
These subpopulations were further broken down by belt use, by degree of ejection, and by injury 
severity (serious injury versus fatal injury) so that an effectiveness estimate (E) can be applied to 
each subpopulation. An occupant may fall in one of these target populations or be 
probabilistically distributed among them based on the distributed variables Complete and Belted.  

E.6.2 Ejection Mitigation Effectiveness 
Based on the assumptions laid out in the FRIA (page 64), effectiveness estimates were drawn 
from Tables IV-63 and IV-65 in the FRIA, which were estimated using the weighted risk of 
ejection method. Where there was contradiction between the values discussed in the text and the 
values reported in the tables, the tabulated values were used. Effectiveness estimates for each 
target subpopulation (B=Belted, U=Unbelted, P=Partially Ejected, C=Completely Ejected), are 
compiled in Table 139 for serious injury cases and in Table 140 for fatal cases. These estimates 
are “uncorrected” in that they have not yet been adjusted according to the correction factors 
determined from Kahane’s evaluation (2014a). 
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Table 139. Uncorrected effectiveness for serious injury cases 

Restraint 
Use Ejection Belted Complete System 

Effectiveness 
Rollover, no side impacts: 

Belted (B*) Partial ejection (P*) 1 0 55 % (BP*) 
Belted Complete ejection (C*) 1 1 0 % (BC*) 
Unbelted (U*) Partial ejection 0 0 50 % (UP*) 
Unbelted Complete ejection 0 1 43 % (UC*) 

Side impacts, no rollovers, 12-25 mph: 
Belted Partial ejection 1 0 49 % (BP) 
Belted Complete ejection 1 1 0 % (BC) 
Unbelted Partial ejection 0 0 49 % (UP) 
Unbelted Complete ejection 0 1 36 % (UC) 

Side impacts, no rollovers, children (0-12 yrs), partial and complete, 12-25 mph: 
Belted Partial ejection 1 0 49 % (BP) 
Belted Complete ejection 1 1 0 % (BC) 
Unbelted Partial ejection 0 0 49 % (UP) 
Unbelted Complete ejection 0 1 36 % (UC) 

Side impacts followed by rollovers, excluding 12-25 mph: 
Belted Partial ejection 1 0 30 % (BP) 
Belted Complete ejection 1 1 0 % (BC) 
Unbelted Partial ejection 0 0 28 % (UP) 
Unbelted Complete ejection 0 1 20 % (UC) 

Side impacts, w/ subsequent rollovers, 12-25 mph: 
Belted Partial ejection 1 0 34 % (BP) 
Belted Complete ejection 1 1 0 % (BC) 
Unbelted Partial ejection 0 0 31 % (UP) 
Unbelted Complete ejection 0 1 23 % (UC) 

* B=belted, U=unbelted, P=partial ejection, C=complete ejection.  
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Table 140. Uncorrected effectiveness for fatal cases 
(Note that values from FRIA appear to be calculated based on 89% sensor effectiveness rather than 

FRIA-reported 81%) 

Restraint 
Use Ejection Belted Complete System 

Effectiveness 
Rollover, no side impacts: 

Belted (B*) Partial ejection (P*) 1 0 44 % (BP*) 
Belted Complete ejection (C*) 1 1 0 % (BC*) 
Unbelted (U*) Partial ejection 0 0 40 % (UP*) 
Unbelted Complete ejection 0 1 50 % (UC*) 

Side impacts, no rollovers, 12-25 mph: 
Belted Partial ejection 1 0 49 % (BP) 
Belted Complete ejection 1 1 0 % (BC) 
Unbelted Partial ejection 0 0 49 % (UP) 
Unbelted Complete ejection 0 1 83 % (UC) 

Side impacts, no rollovers, children (0-12 yrs), partial and complete, 12-25 mph: 
Belted Partial ejection 1 0 49 % (BP) 
Belted Complete ejection 1 1 0 % (BC) 
Unbelted Partial ejection 0 0 49 % (UP) 
Unbelted Complete ejection 0 1 83 % (UC) 

Side impacts followed by rollovers, excluding 12-25 mph: 
Belted Partial ejection 1 0 34 % (BP) 
Belted Complete ejection 1 1 0 % (BC) 
Unbelted Partial ejection 0 0 31 % (UP) 
Unbelted Complete ejection 0 1 53 % (UC) 

Side impacts, w/ subsequent rollovers, 12-25 mph: 
Belted Partial ejection 1 0 32 % (BP) 
Belted Complete ejection 1 1 0 % (BC) 
Unbelted Partial ejection 0 0 29 % (UP) 
Unbelted Complete ejection 0 1 50 % (UC) 

* B=belted, U=unbelted, P=partial ejection, C=complete ejection. 
 
The subsequent retrospective NHTSA evaluation of rollover curtain effectiveness analyzed 
fatality risk of front-seat occupants in first-event rollovers in FARS (Kahane, 2014a), concluding 
an estimated 41.3 percent fatality risk reduction with rollover curtains in this group. This post-
implementation estimate was compared to the pre-implementation prediction in the FRIA by 
examining the FRIA effectiveness estimates for fatalities in rollovers without side impact (Table 
140), which were disaggregated by belt use and ejection status (partial versus complete). The 
proportion of fatally injured rollover occupants in each bin was estimated using the baseline 
retrospective dataset. In the retrospective dataset, 20.7 percent of fatally injured occupants in 
rollover crashes without side impact were belted. Among those belted fatality cases, 10.8 percent 
were complete ejections and 32.6 percent were partial ejections. Among unbelted fatality cases, 



E-46 

75.5 percent of unbelted cases were complete ejections and 7.6 percent were partial ejections. 
The resulting aggregate FRIA estimate for effectiveness of rollover curtains in fatal rollover 
cases without side impact would be 35.3 percent, calculated using Equation (66). The 
retrospectively determined 41.3 percent fatality risk reduction was 16.9 percent higher than this 
aggregate pre-implementation prediction. 

 
 𝐸𝐸𝑊𝑊𝑃𝑃𝑟𝑟𝑃𝑃𝑓𝑓,𝑅𝑅𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟𝑣𝑣𝑟𝑟𝑟𝑟 = (𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃 × 𝐸𝐸𝐵𝐵𝑃𝑃) + (𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃 × 𝐸𝐸𝐵𝐵𝑃𝑃) + (𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃 × 𝐸𝐸𝐶𝐶𝑃𝑃)

+ (𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃 × 𝐸𝐸𝐶𝐶𝑃𝑃) 
(66) 

where, e.g., 
EFatal,Rollover is the estimated effectiveness for fatal rollover cases, 

PropBP is proportion of fatal rollover cases that are Belted, Partial ejection, and 
EBP is FRIA-estimated effectiveness in Belted, Partial ejection fatal rollover cases 

The retrospective evaluation effectiveness, based on post-implementation crash data, is expected 
to be more realistic than the effectiveness estimates made in advance of the implementation of 
the FMVSS No. 226 Upgrade. Although the 41.3 percent effectiveness estimated retrospectively 
for fatal front-seat occupants in first-event rollovers was not derived from an identical target 
population as the aggregate 35.3 percent estimated for fatal rollovers without side impact in the 
FRIA, the two populations are similar enough that the effectiveness for the sub-populations 
within the fatal, rollover without side impact group in the model were each increased by 16.9 
percent to reflect this post-evaluation analysis.  
 
No post-implementation effectiveness data was available for comparison to the pre-
implementation estimates for non-fatal cases, or for fatal cases with side impact. In the absence 
of specific data for these target populations, the 16.9 percent increase calculated for fatal 
rollovers without side impact was applied to all occupants in the target population for this 
countermeasure. In other words, the effectiveness estimates for each group in Table 139 and 
Table 140 were adjusted by multiplying them by 1.169.  

E.6.2.1 Application of Effectiveness 
For cases categorized as non-fatal (FATAL226=0), the effectiveness values reported for serious 
injury (Table 139) were multiplied by 1.169.  
 
As defined for this countermeasure, effectiveness reflects the likelihood that an occupant’s 
serious injuries would be prevented by the countermeasure. The effectiveness is applied to the 
occupant rather than to individual injuries. Since the effectiveness estimates incorporate the 
expected change in injury risk for an ejected occupant versus an occupant who is kept in the 
vehicle, the effectiveness is applied to all an ejected occupant’s serious injuries regardless of the 
source of those injuries.  
 
In the projection model, the severity of injury in each case is important. Therefore, the 
effectiveness estimate was applied to each AIS 3+ injury in the case, reflecting the probability 
that all AIS 3+ injuries would be reduced to AIS 2 severity by the countermeasure. In the 
absence of specific estimates of the effectiveness of FMVSS No. 226 countermeasures in the 
reduction of AIS 2 injuries, it was estimated that the AIS 3+ effectiveness estimates would also 
apply to AIS 2 injuries and represent the proportion of injuries that would be reduced from AIS 2 
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to a lower severity. In the current version of the model, this injury reduction was achieved by 
deleting AIS 2 injuries.  
 
In summary, for each non-fatal case, the effectiveness values in Table 139 were multiplied by 
1.16 and used to proportionally divide the case into two pseudo-cases: one with injuries 
unchanged, and the other with all original AIS 3+ injuries reduced to AIS 2 severity and all 
original AIS 2 injuries deleted.  
 
For cases categorized as fatal (FATAL226=1), the effectiveness values reported for fatality 
(Table 140) were multiplied by 1.169. In the FRIA, these effectiveness values estimated the 
probability that an occupant’s fatality would be prevented. In the projection model, the specific 
injury reduction in a case is more useful than the conversion rate from fatal to non-fatal, since 
this effect is difficult to interpret when several countermeasures are applied. Therefore, the 
effectiveness for fatal cases in the projection model was interpreted to represent the probability 
that all that occupant’s AIS 3+ injuries would be reduced to severity of AIS 2 and all original 
AIS 2 injuries would be deleted.  
 
The effectiveness value from Table 139 or Table 140 applied to a specific case is dependent on 
its crash category (side impact, no rollover, delta V, etc.), the model variables Belted, EjectDeg, 
and deltaV, and on the global target population variable TP226. To accommodate cases that were 
assigned a probabilistic (non-binary) value for Belted, EjectDeg, DeltaV, or TP226 because of 
missing case information, case-specific effectiveness was calculated as a function of these 
variables as well as the effectiveness values tabulated in Table 139 and Table 140 adjusted by the 
factor of 1.169. Additionally, case-specific effectiveness for unbelted fatal cases with complete 
ejection were reduced by 2.3 percent by multiplying by 0.977 to reflect the FRIA estimate that 
crashes would be so catastrophic that injuries would be intractable in that percentage of such 
crashes. 
 
For cases in the “Rollover, no side impact” category, case-specific effectiveness was independent 
of delta V, and was calculated using Equation (67). 
 

 
𝐸𝐸226 = 𝑇𝑇𝑃𝑃226 × �𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿 × 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊 × 𝐸𝐸𝐵𝐵𝑃𝑃 + 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿 × (1 − 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊) × 𝐸𝐸𝐵𝐵𝑃𝑃

+ (1 − 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿) × 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊 × 𝐸𝐸𝐶𝐶𝑃𝑃
× �(1 − 𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃226) +  0.977 × 𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃226� + (1 − 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿)
× (1 − 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊) × 𝐸𝐸𝐶𝐶𝑃𝑃� 

(67) 

 

where: 
E226 is the estimated effectiveness, 

Belted, Complete, and Fatal226 are model variables for target population categories, and EBC, EBP, 
EUC, EUP are effectiveness estimates for occupants who are belted (B), unbelted (U), completely 

ejected (C), or partially ejected (P). 

For cases with side impact where delta V is known and is between 12 and 25 mph, i.e., 
LatDeltaV=1, Equation (68) is used. For cases with side impact where delta V is known and is 
not between 12 and 25 mph, i.e., LatDeltaV=0, Equation (69) is used. For side impact cases 
where delta V is unknown and a probabilistic value has been estimated for the likelihood of delta 
V falling between 12 and 25 mph, then both Equation (68) and Equation (69) are calculated, and 
the results are summed in Equation (70). 



E-48 

 

 

𝐸𝐸226,1 = 𝐿𝐿𝑃𝑃𝑡𝑡𝐷𝐷𝑊𝑊𝑃𝑃𝑡𝑡𝑃𝑃𝐿𝐿 × 𝑇𝑇𝑃𝑃226
× �𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿 × 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊 × 𝐸𝐸𝐵𝐵𝑃𝑃 + 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿 × (1 − 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊) × 𝐸𝐸𝐵𝐵𝑃𝑃
+ (1 − 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿) × 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊 × 𝐸𝐸𝐶𝐶𝑃𝑃
× �(1 − 𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃226) +  0.977 × 𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃226� + (1 − 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿)
× (1 − 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊) × 𝐸𝐸𝐶𝐶𝑃𝑃� 

(68) 

 where: 
E226,1 is the effectiveness for a case in the 12-25 mph delta V range. 

 
 

 

𝐸𝐸226,2 = (1 − 𝐿𝐿𝑃𝑃𝑡𝑡𝐷𝐷𝑊𝑊𝑃𝑃𝑡𝑡𝑃𝑃𝐿𝐿)  × 𝑇𝑇𝑃𝑃226
× �𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿 × 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊 × 𝐸𝐸𝐵𝐵𝑃𝑃 + 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿 × (1 − 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊) × 𝐸𝐸𝐵𝐵𝑃𝑃
+ (1 − 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿) × 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊 × 𝐸𝐸𝐶𝐶𝑃𝑃
× �(1 − 𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃226) +  0.977 × 𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃226� + (1 − 𝐵𝐵𝑊𝑊𝑃𝑃𝑡𝑡𝑊𝑊𝐿𝐿)
× (1 − 𝐶𝐶𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡𝑊𝑊) × 𝐸𝐸𝐶𝐶𝑃𝑃� 

(69) 

 where: 
E226,2 is the effectiveness for a case not in the 12-25 mph delta V range. 

 

 
Since a case with unknown lateral delta V (where 0<LatDeltaV<1) may or may not be within the 
12 and 25 mph range, the estimated effectiveness is the sum of the two effectiveness estimates 
above. This summation (Equation (70)) can be applied to all cases. 

 
 𝐸𝐸226 = 𝐸𝐸226,1 + 𝐸𝐸226,2 (70) 
 where: 

E226,1 and E226,2 are the effectiveness values estimated in Equations (68) and (69).  

E.6.3 Relationship Between Ejection Mitigation and Other Countermeasures  
In the case-by-case method (see Section 2.6.3), each countermeasure is applied to every 
individual case in its target population based on case variables. As discussed in Appendix C.3.3, 
the application of SSF creates pseudo-cases in which rollovers are added to or removed from 
existing cases in the model, and some of those rollovers also involve ejection and ejection 
injuries. These changes have the potential to move a case into, or out of, the target population for 
ejection mitigation. Therefore, the SSF countermeasure must be applied before the ejection 
mitigation countermeasure in the model. The target population definition in the ejection 
mitigation countermeasure specifically addresses criteria for inclusion of the SSF rollover 
pseudo-cases. 

E.6.4 Ejection Mitigation Penetration 
The penetration of side impact air bags and rollover sensors by model year (αMY) up to 2016, 
shown in Table 141, was estimated based on NHTSA’s estimates of installation of FMVSS No. 
226-compliant systems in passenger cars and LTVs (Simons, 2017; Simons, personal 
communication43). For each model year, a combined α value was calculated based on the 
proportion of PCs and LTVs among vehicle sales. For 2017 and later, αMY was estimated to be 
100 percent based on the compliance requirement in the FMVSS No. 226 Final Rule (NHTSA, 
2011b).  
                                                 
43 James F. Simons, Bowhead Logistics Solutions, LLC, Alexandria, VA, personal communication, February 2018. 
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Table 141. Penetration of FMVSS No. 226 by model year (αMY) 

Model Year Proportion of sales 
 αPC (%) αLTV (%) αMY (%) PC LTV 

≤ 2004 48.1 51.9 

 

0.0 4.5 

 

2.3 
2005 50.5 49.5 0.7 10.7 5.6 
2006 52.9 47.1 1.4 20 10.2 
2007 52.9 47.1 1.3 37.8 18.5 
2008 52.7 47.3 2.9 55.4 27.8 
2009 60.5 39.5 1.9 63.6 26.3 
2010 54.5 45.5 7.6 78.5 39.8 
2011 47.8 52.2 13.7 78.8 47.7 
2012 55.0 45.0 12.9 78.3 42.3 
2013 54.1 45.9 15.7 83.9 47.0 
2014 49.2 50.8 28.2 88.7 58.9 
2015 46.8 53.2 60.5 93.4 78.0 
2016 42.0 58.0 70.8 96.6 85.8 

2017-2030     100.0 
 
Using Equation (14) and the vehicle age distributions in Appendix A, the penetration of FMVSS 
No. 226 among vehicles in projected crash years was estimated in Table 142. 

Table 142. Penetration of FMVSS No. 226 Upgrade in projection target years (βTY) 

Crash Year Overall βTY (%) 
2014 32.2 
2020 62.7 
2025 83.8 
2030 95.2 

E.7 FMVSS No. 301 Rear Impact Upgrade 
Although the FMVSS No. 301 rear impact upgrade finalized in 2003 was targeted at reducing 
fires associated with rear impact, the improvements made to meet the new requirements were 
expected to reduce occupant compartment intrusion and injuries as well. For the projection 
model, the fire-reducing benefits of the upgrade were estimated based on the Final Regulatory 
Evaluation (NHTSA, 2003b) and on NCSA’s post implementation evaluation of the upgrade 
(Pai, 2014). The additional reduction in crash injury that was associated with the structural 
improvements needed to reduce fires was quantified in a study by Viano and Parenteau (2016) 
by comparing the rate of AIS 4+ injury in rear-impacted vehicles in model years before and after 
the revision of FMVSS No. 301. As noted by those authors, the cause of the injury rate reduction 
could be attributed to other safety improvements (such as seat structure changes to improve 
retention in the seat) as well as to the FMVSS No. 301 upgrade. However, since no other 
crashworthiness countermeasures involving high-speed rear impact were applied to the 
projection model for vehicle model years during the FMVSS No. 301 phase-in period, this global 
comparison of injury risk in vehicles before and after the phase-in is appropriate and does not 
introduce any double-counting of improvements: this method simply combines the effects of all 



E-50 

rear impact crashworthiness improvements contemporaneous with the FMVSS No. 301 phase-in 
period, regardless of whether they were motivated by the required upgrade.  
 
In this summary, the target populations and effectiveness for fire prevention and crash injury 
reduction are described separately, but it was assumed that the phase-in period is the same for 
both effects included in the projection model. 

E.7.1 Fire Prevention Target Population 
According to the Final Regulatory Evaluation for the FMVSS No. 301 Upgrade (NHTSA, 
2003b), the following cases were included in the target population for fire prevention 
improvements: 
 

• Multi-vehicle crashes, where a passenger vehicle is struck in the rear by another 
passenger vehicle and catches on fire. This population was defined, using NASS CDS 
variables, as follows: 

o Rear impact: NASS CDS variable GAD1=B.  
o Multi-vehicle: NASS CDS variable VEHFORMS>1. 
o The FRE excluded larger-than-passenger-vehicle striking vehicles but noted this 

choice was conservative. For the purpose of the projection model, truck impacts 
were included.  

o The FRE made an adjustment for cases in which a fuel leak in the struck vehicle 
could result in fire in the striking vehicle. In the projection model, fire in striking 
vehicle was only included in the target population if there was also a fire in the 
struck vehicle. The corresponding NASS CDS variables were FIRE in (1, 2) for 
vehicle with GAD1=B. 

• Although the FRE defines target population as cases in which the fire was the cause of 
death or injury, it appears this percentage was estimated rather than drawn from case 
data. Since non-fatal burn injuries were mostly minor and not typically the maximum 
injury, these were not included in the FRE benefits. No exclusion was made in the 
projection model, however, because all burn injuries were deleted from the case. 
GVWR<=10k pounds (NASS CDS variable WGTCDTR<3). 

• No specific delta V is recommended for the target population in the FRE but the analysis 
suggested that only tests “like” the proposed test would be covered. Based on an 
approximation that the test represented a delta V of “about” 20-30 mph, the FRE 
indicated that countermeasures “might have been effective” in delta V crashes “slightly” 
different than this range, estimating that only 40 percent to 70 percent of burn cases in the 
target population would be similar enough to benefit from the revised standard. 
Therefore, for the purpose of the projection model, it was estimated that cases where the 
struck vehicle’s total or longitudinal delta V or estimated delta V was between 15 and 35 
mph were within the target population of the countermeasure. For cases where delta V 
was unknown, it was estimated that 55 percent (mid-point of the range from 40% to 70%) 
were within the target population.  

• The threshold total or longitudinal delta V for inclusion in the FMVSS No. 301 
countermeasure target population was a function of the delta V variables in the original 
NASS CDS source case as well as the estimated delta V reduction (RTPMS) associated 
with the application of the TPMS countermeasure: 
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o DVEST in (3, 4) or  
o 24<DVTOTAL - RTPMS<56 or  
o 24<DVLONG - RTPMS<56 

E.7.2 Fire Prevention Effectiveness 
Although the FRE assumed benefit only for those whose death was attributed to fire, the current 
application assumes that prevention of the fire would lead to the deletion of all burn-related 
injuries (based on AIS codes corresponding to burns). 
 
The FRE analyzed fire cases in crash databases to determine the percentage of rear impact fire 
cases that were similar to the test setup in the revised FMVSS No. 301 test. Benefits were based 
on 50 percent to 75 percent effectiveness of the improvements, estimated based on the risk of fire 
in vehicles meeting the improved standard compared to those not meeting the improved standard. 
 
A follow-up analysis in 2014 (based on FARS cases, Polk registration data, and information on 
vehicle models that were certified to meet rear impact upgrade requirements in each model year) 
refined the NHTSA estimate to 50 to 65 percent fire-reduction effectiveness for the rear impact 
estimate (Pai, 2014).  
 
The estimated effectiveness for fire prevention in the projection model was based on NHTSA’s 
2014 estimate of effectiveness of 50 to 65 percent, with effectiveness of 57.5 percent assigned to 
cases in the target population with known delta V. For cases with unknown delta V, but 
otherwise in the target population, the effectiveness estimate was reduced to 55 percent of the 
original estimate to reflect the finding (discussed in the target population section) that 40 to 70 
percent of all cases would be “similar enough” to the regulatory test to benefit from the 
improvements. The resulting effectiveness in cases where delta V was unknown was 31.6 
percent (0.55 * 0.575 = 0.316).  

E.7.3 Rear Impact Crashworthiness Target Population 
The target population for crashworthiness improvements associated with FMVSS No. 301 was 
slightly different than the one used for fire prevention: 
 

• Crashworthiness effects were applied only to the struck vehicle in car-to-car rear impacts. 
• As in Viano and Parenteau, relevant rear impacts included the following (with the NASS 

CDS variables used to code them): 
o Principal impact location rear (GAD1=B). 
o Rollovers excluded (ROLLOVER=0).  

• No limitations regarding the striking vehicle. 
• The FMVSS No. 301 FRIA indicated that the test represented a delta V of “about” 20 to 

30 mph. According to supplemental data in Viano and Parenteau’s study, average injury 
effectiveness was relatively low when averaged across the 15 to 30 mph delta V bin 
compared to the effectiveness calculated for all cases with delta V of 15 mph and greater, 
suggesting low effectiveness at the lower speeds in the 15 to 30 mph range and greater 
effectiveness at higher speeds. The Viano delta V ranges were based on total, rather than 
longitudinal delta V. Therefore, the target population for FMVSS No. 301 
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crashworthiness improvements was limited to struck vehicles in which the total delta V 
was estimated to be 20 mph or greater. 

• The threshold total or longitudinal delta V for inclusion in the FMVSS No. 301 target 
population was a function of the NASS CDS delta V variables in the original source case 
as well as the estimated delta V reduction (RTPMS) associated with the application of the 
TPMS countermeasure. 

o DVTOTAL – RTPMS>32 or  
o DVLONG – RTPMS>32 or  
o DVEST in (4, 5)  

• Viano’s supplemental data showed that approximately 18 to 23 percent of cases with 
known delta V were documented with delta V of 15 mph or greater. For the purpose of 
this model, it is roughly estimated that approximately half of these crashes had delta V of 
20 mph or greater. Therefore, for rear impact cases with unknown delta V, it was 
estimated as a placeholder that approximately 10 percent of cases with unknown delta V 
would be in the target population.  

E.7.4 Rear Impact Crashworthiness Effectiveness 
Viano and Parenteau reported on the reduction of MAIS 4+ cases from model years preceding 
the FMVSS No. 301 upgrade to model years after the FMVSS No. 301 upgrade. Effectiveness 
estimated based on their analysis was interpreted to correspond to the reduction of AIS 4 to 6 
injuries (in fatal or non-fatal cases) to AIS 3. No reduction was made to AIS 3 injuries in this 
countermeasure, although adjustments to lower-severity injuries would be reasonable to consider 
in the future. 
 
The injury reductions reported by Viano and Parenteau were complicated by the relatively small 
number of late MY vehicles in the dataset and by severe injuries in these vehicles. The reduction 
in severe (or worse) injury among all rear impact occupants in the target population was 
estimated to be 70.2 percent. When limited to cases where known delta V was 15 mph or greater, 
the severe injury reduction was 69.4 percent. In the absence of an estimate specifically based on 
cases in the 20+ mph delta V target population, an effectiveness of 70 percent was estimated for 
the target population used in the projection model.  
 
It should be noted that the injury reduction reflected in this effectiveness estimate cannot be 
definitively attributed to improvements made to meet FMVSS No. 301 requirements. Therefore, 
application of this effectiveness should be considered as an overall improvement in rear impact 
protection during this period, rather than a necessarily direct benefit of FMVSS No. 301.  

E.7.5 Relationship Between FMVSS No. 301 and Other Countermeasures  
In the case-by-case method (see Section 2.6.3), each countermeasure is applied to every 
individual case in its target population based on case variables. The target population for the 
improvements made relative to FMVSS No. 301 relies on the estimated delta V of the struck 
vehicle. That delta V was estimated from the original delta V documented in the CDS case but 
adjusted for the expected delta V reduction associated with the application of TPMS (RTPMS) to 
the striking vehicle as discussed in Section D.2. Therefore, FMVSS No. 301 must be applied 
after TPMS in the model. 
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E.7.6 Rear Impact Update Penetration 
The penetration of vehicle changes made to meet the requirements of FMVSS No. 301 were 
assumed to correspond to both the fire-reduction benefits as well as the crashworthiness benefits 
of the improvements. 
 
The required phase-in period for the FMVSS No. 301 upgrade spanned from 2007 to 2009. A 
post-implementation assessment of the FMVSS No. 301 upgrade reported on certification 
percentages of actual implementation of the rule (Pai, 2014), shown in Table 143.  

Table 143. FMVSS No. 301 compliance rates (Pai, 2014) 

Model Year Certified percentage of vehicles actually compliant (%) 
2006 18.23 
2007 57.40 
2008 82.93 
2009 100 

 
Pai also used test data on vehicles with MY 2005 and earlier to estimate that sales-weighted 
compliance prior to this time was 39.9 percent for vehicles weighing less than 3,500 pounds, and 
higher for heavier vehicles. The final estimates of penetration by model year used in the 
projection model was therefore as shown in Table 144.  

Table 144. Penetration of FMVSS No. 301 upgrade by model year (αMY)  

Model Year αMY (%) 
2006 and earlier 39.9 

2007 57.4 
2008 82.9 

2009+ 100 
 
Using Equation (14) and the vehicle age distribution data in Appendix A, the penetration of 
FMVSS No. 301 compliance among vehicles in projection crash years was estimated in Table 
145. 

Table 145. Penetration of FMVSS No. 301 upgrade in projection target years (overall βTY)  

Crash Year Overall βTY (%) 
2014 82.4 
2020 94.2 
2025 98.4 
2030 99.7 
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Appendix F: Program and Infrastructure Countermeasures 

F.1 Roadway Rumble Strips 
Rumble strips alert inattentive drivers, using vibration and sound, when their vehicles leave the 
travel lane. This countermeasure applies the effects of both shoulder/edge line rumble strips and 
centerline rumble strips.  

F.1.1 Rumble Strips Target Population 
The Transportation Research Board’s National Cooperative Highway Research Program Report 
641: Guidance for the Design and Application of Shoulder and Centerline Rumble Strips 
(Torbic, 2009) includes an evaluation of the safety effectiveness of rumble strips based on the 
frequency of targeted crashes before and after their implementation. Based on this report, the 
target population for rumble strips and associated coding parameters in the projection model are 
defined below.  
 
Centerline rumble strip target crashes: head-on and sideswipe opposite direction crashes: 
 

• NASS CDS variable ACCTYPE in (50-53, 64-67) 
 
Shoulder rumble strip target crashes: single vehicle run off the road crashes: 
 

• NASS CDS variable ACCTYPE in (1, 6)  
 
Roadway type: Per the Federal Highway Administration, two-lane roadways have had relatively 
limited use of rumble strips historically (compared to freeways, on which rumble strips are more 
common), but these types of roadways show the highest reductions in crash frequency with 
rumble strips (Himes & McGee, 2016). Therefore, while the NCHRP report includes results for 
other roadway types, the application to the projection model will be limited to urban and rural 
two-lane roadways. There are no NASS CDS variables to distinguish urban and rural crash 
locations; however, by limiting to two-lane roadways, it is reasonable to roughly separate urban 
and rural by speed limit. Based on a brief review of speed limit practices across multiple States, a 
45 mph division was used for the projection model. It was pragmatically approximated that two 
lane roads with a speed limit greater than or equal to 45 mph (72 km/h) are rural or exurban 
roads, and two lane roads with a speed limit lower than 45 mph are urban roads. The 
corresponding NASS CDS variables to define the two target subpopulations were as follows: 
 

• Urban two-lane roads: (TRAFFLOW in (1, 2) and LANES=1) or (TRAFFLOW=0 and 
LANES=2) AND SPLIMIT<72 

• Rural two-lane roads: (TRAFFLOW in (1, 2) and LANES=1) or (TRAFFLOW=0 and 
LANES=2) AND SPLIMIT>=72 

 
Exclusions: It is noted that rumble strips likely have little benefit in situations where the vehicle 
is making an intentional maneuver, such as an evasive maneuver or passing another vehicle, or in 
situations of vehicle failure or control loss, so these cases were excluded. Additionally, rumble 
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strips are generally not present at intersections or other junctions, so these crashes were excluded 
as well. These exclusions were coded using the following NASS CDS variables: 
 

• Vehicle failure: PREEVENT in (1-4) 
• Control loss: PREEVENT in (5-9) 
• Intentional maneuver: PREMOVE in (6, 8-12, 14-16) 
• Intersections and junctions: RELINTER in (1:4) 

F.1.2 Rumble Strips Effectiveness 
NCHRP estimated the following safety effectiveness of rumble strips (Table 146). These 
effectiveness estimates are defined relative to crash prevention, correspond to the reduction of 
the case weight of any case in the target population.  

Table 146. Safety effectiveness of rumble strips 

Rumble Strip 
Type 

Roadway Type Crash Type Crash Reduction 
(Effectiveness) 

Centerline 
rumble strips 

Urban two-lane roads 
All target crashes 40% 
Fatal/injury target crashes 64% 

Rural two-lane roads 
All target crashes 30% 
Fatal/injury target crashes 44% 

Shoulder rumble 
strips Rural two-lane roads 

All target crashes 15% 
Fatal/injury target crashes 29% 

 
To apply these estimates to non-injury crashes as well as to fatal/injury crashes, effectiveness 
estimates were calculated for non-injury crashes using Equation (72). The relative proportions of 
fatal/injury target crashes to non-injury target crashes were drawn from the crash statistics 
provided in the NCHRP report (Tables 22, 59, 60). These statistics are shown in Table 147, 
along with the resulting effectiveness estimates for non-injury crashes.  
 
By the definition of effectiveness: 

 
 𝐸𝐸𝑃𝑃𝑓𝑓𝑓𝑓 =

𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑎𝑎
𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 + 𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑎𝑎

 (71) 

where: 
Einj, Enon-inj, Eall is the effectiveness (in injury cases, non-injury cases, and in all cases), and 

Total is the number of injury or non-injury crashes in NCHRP crash statistics. 
  
That relationship can be rearranged to isolate the effectiveness specifically in non-injury cases:  
 

 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 =
𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 ∗ (𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 +  𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑎𝑎) − 𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑎𝑎

𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎
 (72) 
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Table 147. Effectiveness estimate calculation for non-injury crashes 

Rumble 
Strip Type 

Roadway 
Type 

From Source Data on Effectiveness 
(NCHRP) 

Calculated With 
Equation (72) 

Eall Einj Totalinj Totalnon-inj Enon-inj 

Centerline 
rumble strips 

Urban two-
lane roads 40 64 90 79 13% 

Rural two-
lane roads 30 44 559 518 15% 

Shoulder 
rumble strips 

Rural two-
lane roads 15 29 868 1058 4% 

 
In summary, the effectiveness values in Table 148 were applied to cases in each target 
subpopulation in the projection model. The effectiveness value was applied to all vehicles and 
occupants in a given crash. Injury crashes were defined as crashes in which at least one occupant 
in one vehicle was listed as having at least one AIS 1+ injury. 

Table 148. Effectiveness of rumble strips for application to projection model 

Rumble 
Strip Type 

Roadway 
Type 

Effectiveness in 
Injury/Fatality 

Cases 
(Effinj) 

Effectiveness in 
Non-Injury Cases 

(Effnon-inj) 

Centerline 
rumble strips 

Urban two-
lane roads 64% 13% 

Rural two-lane 
roads 44% 15% 

Shoulder 
rumble strips 

Rural two-lane 
roads 29% 4% 

 

F.1.3 Rumble Strips Penetration 
Penetration, as applied to infrastructure improvements in the projection model, is an estimate of 
the rate of installation of the countermeasure on roadways in the target population. For rumble 
strips, estimated penetration by crash year is an estimate of the percentage of potential crashes in 
the defined target population that could be expected to occur at sites with rumble strips installed. 
There is no data available on historical rumble strip installation, nor on expected future 
installation rates. Therefore, very rough estimates were made based on provisional assumptions 
about past and future adoption of rumble strips using values that can be updated as more 
definitive information comes available. 
 
FHWA includes rumble strips on two-lane roads in its list of proven safety countermeasures and 
recommends that Federal, State, and local governments consider rumble strips when 
administering highway projects. FHWA’s Decision Support Guide for the Installation of 
Shoulder and Center Line Rumble Strips on Non-Freeways includes three approaches for 
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identifying roadways for the installation of rumble strips (Himes & McGee, 2016). The systemic 
safety approach identifies roadways with high risk factors associated with target crashes, the high 
crash corridor safety approach identifies roadways with above-average crash frequencies, and the 
systematic approach focuses on installing rumble strips system-wide, often while completing 
other projects, unless there is a reason for exception. Previous support for rumble strip 
installation was included in the NCHRP Report 641 in 2009 and an FHWA Technical Advisory 
in 2011.  
 
Although rumble strips would ideally be implemented in high-frequency crash areas, in addition 
to being implemented system-wide, installation is often limited by other considerations.44 For 
example, installation can be limited by road width or by road surface materials that are unable to 
handle a milled rumble. Rumble strips may also not be placed in locations where installation may 
leave inadequate room for cyclists or near residences because of noise concerns. Centerline 
rumble strips may not be installed in passing lanes. Due to lack of specific information on 
installation, it was therefore estimated for the purpose of the projection model that rumble strips 
would be installed using a systematic approach on a proportion of existing roads when they 
undergo substantial construction, such as asphalt resurfacing, rather than at particularly high-risk 
locations. Two-lane asphalt roads are typically resurfaced every 15 years.45 Therefore, as a 
preliminary estimate of increased rumble strip implementation for the purpose of the projection 
model, it was estimated as a starting point that: 
 

(1) Installation of rumble strips stayed relatively constant prior to the publication of 
the 2009 NCHRP Report 641. 

(2) Installation of rumble strips over 2009 levels began increasing at a constant rate in 
2010 and will continue at this constant rate in the future.  

(3) Each year, 1/15 of all roads will be resurfaced on average.  
(4) In rural locations, an estimated 4 percent of these resurfacing projects will include 

the addition of shoulder rumble strips in the near future, but the rate will slow to 2 
percent by 2025 as the result of complicating factors such as road width and bike 
lane installation on the remaining roads.  

(5) Rural centerline rumble strips will be included in approximately 2 percent of 
resurfacing projects. 

(6) In urban locations, an estimated 1 percent of these resurfacing projects will 
include the addition of centerline rumble strips. 

 
The resulting estimated penetration is shown in Table 149.  

                                                 
44 Cathy Satterfield, Federal Highway Administration, personal communication, May 2018. 
45 Mark Spears, EHM&T, New Albany, OH, personal communication, August 2017. 
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Table 149. Penetration of rumble strips on two-lane roadways over 2009 levels (βTY and αCY) 

Crash Year 
αCY for 2009–2030 and Overall βTY for 2014, 2020, 2025, 2030 (%) 

Rural Shoulder 
Rumble Strips 

Rural Centerline 
Rumble Strips 

Urban Centerline 
Rumble Strips 

≤ 2009 0.00 0.00 0.00 
2010 0.27 0.13 0.07 
2011 0.53 0.27 0.13 
2012 0.80 0.40 0.20 
2013 1.07 0.53 0.27 
2014 1.33 0.67 0.33 
2015 1.60 0.80 0.40 
2016 1.87 0.93 0.47 
2017 2.13 1.07 0.53 
2018 2.40 1.20 0.60 
2019 2.67 1.33 0.67 
2020 2.93 1.47 0.73 
2021 3.20 1.60 0.80 
2022 3.47 1.73 0.87 
2023 3.73 1.87 0.93 
2024 4.00 2.00 1.00 
2025 4.13 2.13 1.07 
2026 4.27 2.27 1.13 
2027 4.40 2.40 1.20 
2028 4.53 2.53 1.27 
2029 4.67 2.67 1.33 
2030 4.80 2.80 1.40 

F.2 Maximum Speed Limit Increases 
Driving speed is a key factor in road safety, affecting both the likelihood and the severity of a 
crash (Aarts & van Schagen, 2006). Since the 1995 repeal of the national maximum speed limit 
of 65 mph on rural interstates, States have been raising their maximum speed limits leading to an 
increase in average driving speeds. It has been estimated that 18,000-33,000 fatalities between 
1995 and 2013 can be attributed to State speed limit increases (Farmer, 2017b). Presently, 19 
States have a maximum speed limit of 75 mph or greater as seen in Figure 31 (IIHS, 2019). 
There have been 22 +5 mph increases in individual States since 2007 and expressed interest in 
future increases by at least 11 States. 
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Figure 31. Maximum speed limits by State as of April 2019 (IIHS, 2019)  

F.2.1 Maximum Speed Limit Increases Target Population 
When a State increases the maximum speed limit, the roads that get a posted increase are 
historically rural highways defined as multiple-lane, limited-access highways with restricted 
access via exit and entrance ramps (IIHS, 2019). These roads are selected due to their relatively 
low traffic and minimal speed fluctuations when compared to arterial, urban highways. 
Additionally, arterial roadways encompass many intersections, residential areas, and school 
zones and therefore, would not be suitable for an increase to a State’s maximum speed limit in 
the future.  

The target population for speed limit increases was defined as occupants in injury and fatal 
crashes occurring on rural highways, identified using the following NASS CDS variables: 
 

• GV/TRAFFLOW=1 (divided, no barrier),  
• GV/LANES>1 (at least two lanes),  
• GV/SPLIMIT>96 (speed limit ≥ 60 mph),  
• GV/TRAFCONT^ in (1:8) (no traffic signals), and 
• ACC/AAIS>0 (injury crashes). 

F.2.2 Maximum Speed Limit Increases Anti-Effectiveness 
When the speed limit is increased, the mean driving speed also increases. A logarithmic model of 
this relationship was developed for the model (Figure 32), using the observed mean speeds based 
on posted speed limits on rural highways reported in the literature (Parker, 1997; Skszek, 2004; 



F-7 

Kockelman, 2006; Mannering, 2007; Retting & Cheung, 2008; Hu, 2017). A log model was 
selected because human behavior with regard to driving speed has been noted to be logarithmic 
and for any given road, there is a maximum speed at which drivers are comfortable regardless of 
the posted speed limit. The best fit log model provided an R2 value of 86 percent. Mean speeds 
for common speed limits on rural highways, estimated using the relationship defined in Figure 
32, are summarized in Table 150. 
 

 
Figure 32. Mean speed on a rural highway based on speed limit 

 
Table 150. Estimated mean speed for common speed limits on rural interstates 

Speed Limit 
(mph) 

Mean Speed 
(mph) 

60 67.6 
65 71.3 
70 74.7 
75 77.9 
80 80.9 
85 83.7 

 
The increase in mean speed due to higher speed limit results in more fatal and non-fatal injury 
crashes. The relationship between a change in mean speed and the subsequent crash increase has 
been modeled by Elvik (2013), with the effect on crashes varying with the initial speed limit. 
Elvik’s mathematical models are defined in Equations (73) and (74) for fatal and injury crashes. 
Table 151 summarizes the resulting predicted effect of +5 mph change on a rural interstate.  
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 𝐴𝐴 = ��
𝑥𝑥2
𝑥𝑥1
�
4.234

− 1� (73) 

where: 
F is the percentage increase in fatal crashes when the mean speed increases from x1 to x2. 

 
 𝑅𝑅 = �𝑊𝑊0.0548(𝑥𝑥2−𝑥𝑥1) − 1� (74) 

where: 
I is the percentage increase in non-fatal injury crashes when the mean speed increases from x1 to x2. 

 
Table 151. Expected increase in crashes with a speed limit increase on a rural interstate 

Speed Limit 
Increase (mph) 

Mean Speed 
Increase (mph) 

% Increase in Crashes 
Fatal Non-fatal Injury 

+5
 m

ph
 60 to 65 67.6 to 71.3 25 22 

65 to 70 71.3 to 74.7 22 20 
70 to 75 74.7 to 77.9 19 19 
75 to 80 77.9 to 80.9 17 18 
80 to 85 80.9 to 83.7 15 17 

 
For coding purposes in the projection model, a simplified estimate was developed for crash 
increases independent of the initial speed limit using data from 2005 and 2009. The first step was 
to assign each State a weight term (Equation (75)) that corresponded to the ratio of fatal and non-
fatal injury crashes occurring in that State over those occurring nationally. Crash data from 2009, 
summarized in Table 152 (Nelli et al., 2014), was used to calculate the weight term because it 
was the most recent year for which State-by-State data was available. For States where the 
number of annual non-fatal injury accidents was incomplete, the values were estimated using a 
regression based on the State-specific number of fatal accidents, licensed drivers, and vehicle 
miles traveled (R2=0.98). Italicized values in Table 152 are regression-based estimates.  
 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 =  
(𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑖𝑖𝑃𝑃𝑐𝑐𝑦𝑦)𝑃𝑃𝑟𝑟𝑃𝑃𝑟𝑟𝑟𝑟

(𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑖𝑖𝑃𝑃𝑐𝑐𝑦𝑦)𝐶𝐶𝑁𝑁
=

(𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑖𝑖𝑃𝑃𝑐𝑐𝑦𝑦)𝑃𝑃𝑟𝑟𝑃𝑃𝑟𝑟𝑟𝑟
1,890,989

 (75) 

 
where: 

Weight is proportional to the number of injury and fatality crashes in a given State in 2009, and 
Fatal and NonFatalInjury are counts of the 2009 number of injury cases of each type in a given 

State. 
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Table 152. Number of crashes by type and State in 2009 

State Fatal Non-fatal 
Injury Total Weight 

 

State Fatal Non-fatal 
Injury Total Weight 

AL 775 25,415 26,190 0.0138 MT 208 5,793 6,001 0.0032 
AK 64 615 679 0.0004 NE 205 12,212 12,417 0.0066 
AZ 807 33,805 34,612 0.0183 NV 243 9,496 9,739 0.0052 
AR 529 19,486 20,015 0.0106 NH 110 6,163 6,273 0.0033 
CA 2,805 163,524 166,329 0.0880 NJ 545 67,394 67,939 0.0359 
CO 599 32,201 32,800 0.0173 NM 319 13,137 13,456 0.0071 
CT 214 25,738 25,952 0.0137 NY 1,060 133,888 134,948 0.0714 
DE 96 4,946 5,042 0.0027 NC 1,234 69,394 70,628 0.0373 
FL 2,371 125,681 128,052 0.0677 ND 116 2,450 2,566 0.0014 
GA 1,349 81,730 83,079 0.0439 OH 945 73,290 74,235 0.0393 
HI 109 3,824 3,933 0.0021 OK 738 42,510 43,248 0.0229 
ID 226 6,803 7,029 0.0037 OR 377 17,754 18,131 0.0096 
IL 832 63,383 64,215 0.0340 PA 1,143 61,776 62,919 0.0333 
IN 632 33,786 34,418 0.0182 RI 83 2,918 3,001 0.0016 
IA 338 14,434 14,772 0.0078 SC 817 31,086 31,903 0.0169 
KS 350 13,927 14,277 0.0076 SD 131 3,483 3,614 0.0019 
KY 730 25,036 25,766 0.0136 TN 989 47,786 48,775 0.0258 
LA 729 45,335 46,064 0.0244 TX 2,793 155,044 157,837 0.0835 
ME 159 6,412 6,571 0.0035 UT 258 19,424 19,682 0.0104 
MD 516 32,358 32,874 0.0174 VT 74 2,601 2,675 0.0014 
MA 334 45,558 45,892 0.0243 VA 694 44,284 44,978 0.0238 
MI 836 53,550 54,386 0.0288 WA 462 35,789 36,251 0.0192 
MN 371 22,159 22,530 0.0119 WV 356 10,030 10,386 0.0055 
MS 700 40,363 41,063 0.0217 WI 495 31,085 31,580 0.0167 
MO 786 37,005 37,791 0.0200 WY 116 3,360 3,476 0.0018 

 
For each State, Equations (73) and (74) were used to calculate the potential percentage increase 
in crashes due to a +5 mph increase over the 2005 State speed limit. A +5 mph change was 
selected because approximately 90 percent of the State speed limit increases since the repeal of 
the national maximum speed limit have been of this magnitude. The remaining 10 percent were 
+10 mph changes which were treated as two +5 mph increases. Each State’s potential crash 
increase was multiplied by the weight term and the weighted increases for all 50 States were 
summed to estimate increases in crashes due to any 5 mph increase in State maximum speed 
limit. Table 153 summarizes this process. For example, Alabama’s maximum speed limit in 2005 
was 70 mph. A potential +5 mph increase to 75 mph in this State was estimated to result in a 19 
percent increase in both fatal and non-fatal injury crashes based on Equations (73) and (74). 
Alabama’s contribution to a national increase in fatal and injury crashes was calculated by 
multiplying its 0.0138 weight by 19, which corresponds to an estimated 0.2622 percent increase 
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in the total national number of fatal and injury crashes as a result of a +5 mph increase in 
Alabama.  
 
To calculate a national increase, the weighted increases for all 50 States were summed. On 
average, a +5 mph increase in State maximum speed limit was estimated to increase fatal and 
non-fatal injury crashes on rural highways by 19.5 percent, and 19.1 percent, respectively. Since 
the national estimated percentage increase in fatal and non-fatal injury crashes are within 0.4 
percentage points of each other, the projection model applies an effectiveness corresponding to a 
mean 19.3 percent increase for all crashes in the injury-crash target population due to 5 mph 
increases in State maximum speed limits.  
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Table 153. Estimated crash increases associated with +5 mph speed limit increase 

State 
Weight 

(% of 2009 
crashes) 

2005 Max 
Limit 
(mph) 

Potential % Crash Increase Weighted Crash Increase 

Fatal Injury Fatal Injury 
AL 1.38 70 19 19 0.2622 0.2622 
AK 0.04 65 22 20 0.0088 0.0080 
AZ 1.83 75 17 18 0.3111 0.3294 
AR 1.06 70 19 19 0.2014 0.2014 
CA 8.80 70 19 19 1.6720 1.6720 
CO 1.73 75 17 18 0.2941 0.3114 
CT 1.37 65 22 20 0.3014 0.2740 
DE 0.27 65 22 20 0.0594 0.0540 
FL 6.77 70 19 19 1.4894 1.3540 
GA 4.39 70 19 19 0.8341 0.8341 
HI 0.21 60 25 22 0.0525 0.0462 
ID 0.37 75 17 18 0.0629 0.0666 
IL 3.40 65 22 20 0.7480 0.6800 
IN 1.82 70 19 19 0.3458 0.3458 
IO 0.78 70 19 19 0.1482 0.1482 
KS 0.76 70 19 19 0.1444 0.1444 
KY 1.36 65 22 20 0.2992 0.2720 
LA 2.44 70 19 19 0.4636 0.4636 
ME 0.35 65 22 20 0.0770 0.0700 
MD 1.74 65 22 20 0.3828 0.3480 
MA 2.43 65 22 20 0.5346 0.4860 
MI 2.88 70 19 19 0.5472 0.5472 
MN 1.19 70 19 19 0.2261 0.2261 
MS 2.17 70 19 19 0.4123 0.4123 
MO 2.00 70 19 19 0.3800 0.3800 
MT 0.32 75 17 18 0.0544 0.0576 
NE 0.66 75 17 18 0.1122 0.1188 
NV 0.52 75 17 18 0.0884 0.0936 
NH 0.33 65 22 20 0.0726 0.0660 
NJ 3.59 65 22 20 0.7898 0.7180 

NM 0.71 75 17 18 0.1207 0.1278 
NY 7.14 65 22 20 1.5708 1.4280 
NC 3.73 70 19 19 0.7087 0.7087 
ND 0.14 75 17 18 0.0238 0.0252 
OH 3.93 65 22 20 0.8646 0.7860 
OK 2.29 75 17 18 0.3893 0.4122 
OR 0.96 70 19 19 0.1824 0.1824 
PA 3.33 65 22 20 0.7326 0.6660 
RI 0.16 65 22 20 0.0352 0.0320 
SC 1.69 70 19 19 0.3211 0.3211 
SD 0.19 75 17 18 0.0323 0.0342 
TN 2.58 70 19 19 0.4902 0.4902 
TX 8.35 80 15 17 1.2525 1.4195 
UT 1.04 75 17 18 0.1768 0.1872 
VT 0.14 65 22 20 0.0308 0.0280 
VA 2.38 65 22 20 0.5236 0.4760 
WA 1.92 70 19 19 0.3648 0.3648 
WV 0.55 70 19 19 0.1045 0.1045 
WI 1.67 65 22 20 0.3674 0.3340 
WY 0.18 75 17 18 0.0306 0.0324 

Total 19.5% 19.1% 
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F.2.3 Maximum Speed Limit Increases Penetration 
Because the source CDS cases for the model were not sampled to be representative by State, 
overall penetration was estimated nationally, rather than on a State-by-State basis. This national 
penetration was essentially an estimate of the percentage of U.S. crashes in a given year that 
occur in States that have enacted a +5 mph maximum speed limit increase since 2005. From 
January 1, 2005, to December 31, 2018, there were 22 increases in State maximum speed limits 
in individual States. Since the national “penetration” resulting from a State speed limit increase 
will not be the same for each State (e.g., a +5 mph increase in California has a much greater 
effect on average national crash safety than a +5 mph increase in Rhode Island), national 
penetration has been estimated by multiplying the number of +5 mph speed limit increases by the 
State weight in Table 152. Figure 33 indicates the timing and the impact of each State’s speed 
limit increases on national penetration using 2005 as a baseline. For example, the step labeled 
KY in 2007 represents Kentucky’s 2007 65-to-70 mph increase, weighted by 1.36 percent from 
Table 152. In 2012 Maine increased the max speed to 75 mph from 65 mph, effectively two +5 
mph changes. The penetration increase in 2012 due to Maine is 2×0.35%=0.7%. 
 

 
Figure 33. +5 mph speed limit increases weighted by State over 2005 levels  

 
Since several States currently have pending legislation or lobbyist groups advocating for higher 
maximum speed limits, it is expected that additional increases will occur. Future penetration was 
estimated by assuming that overall national penetration, calculated based on State weights, will 
continue to increase at the same rate until reaching a plateau. The plateau was estimated under 
the approximation that half of the States with State maximum limits under 75 mph in 2018 will 
have one +5 mph increase, resulting in an estimate of 36 percentage points of continued 
penetration beyond current levels (Table 154). The estimate for future penetration was developed 
by placing a linear best-fit line through the weighted pre-2019 data from Figure 33 up to the 
estimated plateau, 36 percentage points higher than current rates (Table 154).  
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Table 154. Estimated additional penetration after 2018 

States with speed limits <75 mph in 2018 Weight 
AL 0.0138 
AK 0.0004 
CA 0.0880 
CT 0.0137 
DE 0.0027 
FL 0.0677 
GA 0.0439 
HI 0.0021 
IL 0.0340 
IN 0.0182 
IA 0.0078 
KY 0.0136 
MD 0.0174 
MA 0.0243 
MN 0.0119 
MS 0.0217 
MO 0.0200 
NH 0.0033 
NJ 0.0359 
NY 0.0714 
NC 0.0373 
OH 0.0393 
OR 0.0096 
PA 0.0333 
RI 0.0016 
SC 0.0169 
TN 0.0258 
VT 0.0014 
VA 0.0238 
WV 0.0055 
WI 0.0167 

% of U.S. crashes in States with maximum speed limit <75 mph: 
sum 0.72 (72%) 

Estimated penetration increase: 0.5 (sum) 0.36 (36%) 
 
Based on the known speed limit changes since 2005, the rate of increases since 2005, and 
projected speed limit increases, estimated penetration (% of crashes in the target population 
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affected by the speed limit increase) is plotted in Figure 34. Specific penetration values from 
Figure 34 used for the projection model are summarized in Table 155. 
 

 

(2028, 76.0) 
 

≈36
 

Y=3.45X-6920.7 
 

Figure 34. Estimated penetration for maximum State speed limit increases over 2005 levels by crash year 
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Table 155. Penetration of maximum State speed limit increases over 2005 levels (βTY and αCY) 

Crash Year 

αCY for 2009-2015 
and Overall βTY for 
2014, 2020, 2025, 

2030 (%) 
≤ 2005 0.0 
2006 0.0 
2007 1.4 
2008 2.4 
2009 2.4 
2010 7.4 
2011 22.8 
2012 23.5 
2013 23.8 
2014 27.8 
2015 33.6 
2020 48.3 
2025 65.6 
2030 76.0 

F.3 Cable Median Barriers 
Cross-median crashes, often referred to as cross-overs, are among the most injurious and fatal 
crashes occurring on highways. The number of these crashes can be minimized by installing a 
median barrier. The installation of tension cable median barriers on rural interstates, as seen in 
Figure 35, has been increasing since the 1990s (Ray et al., 2009). CMBs function by redirecting 
a striking vehicle by elastically stretching the cables, minimizing the forces on the vehicle and its 
occupants. During a crash, the kinetic energy of the vehicle is absorbed by deformation of the 
posts and stretching of the cables. This type of median barrier is an advantageous choice due to 
its low installation costs, reduced impact forces, and better visibility when compared to solid 
barriers (Russo et al., 2016). Cable median barriers significantly reduce cross-over crashes 
compared to no barrier when placed correctly in the median to engage with the vehicle without 
over-ride or under-ride. They also reduce injuries when compared to crashes with concrete or 
guard rail barriers. However, CMBs do increase single vehicle, property-damage-only crashes 
when compared to no barrier. 
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Figure 35. Example of a cable median barrier 

F.3.1 Cable Median Barrier Target Population 
The installation of CMBs affect two types of crashes, identified as follows: 
 

• Multi-vehicle cross-over crashes where a vehicle departs the road on the left side and 
collides with a vehicle in the oncoming lane, and 

• Single-vehicle crashes where the vehicle departs the left side of the road and strikes a 
fixed object. 

 
The target population for both types of crashes is expected to be limited to those occurring on 
rural divided highways with speed limits greater than or equal to 55 mph.  
 
Effectiveness was estimated separately for each of these target populations, which were 
identified in the projection model as follows. For both target populations, crashes in the target 
population were limited using the following NASS CDS variables: 
 

• GV/TRAFFLOW=1 (divided, no barrier)  
• GV/LANES>1 (at least two lanes)  
• GV/SPLIMIT>88 (speed limit ≥ 55 mph) 
• GV/TRAFCONT^ in (1:8) (no traffic signals)  

The cross-over target population was identified using the following NASS CDS variables: 
  

• ACC/VEHFORMS>1, and 
• GV/PREEVENT=62 (vehicle encroaching into lane from opposite direction over 

left lane line) 
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The single-vehicle target population was identified using the following NASS CDS variables: 
  

• GV/ACCTYPE in (6-10), and  
• GV/OBJCONT1 or OBJCONT2 in (31, 32, 36, 38, 39, 41:45, 50:53, 57, 60, 61, 

64, 68, and 69) 

F.3.2 Cable Median Barrier Effectiveness 
CMBs are effective at preventing most cross-overs and reducing the number of occupants who 
suffer disabling injuries. However, CMBs increase the number of low-severity injuries and non-
injury crashes. Therefore, the effectiveness of CMBs varies based on the type of crash.  

F.3.2.1 Effectiveness in cross-over crashes 
Cable median barriers prevent approximately 94 percent of cross-over crashes (Ray et al., 2009; 
Villwock et al., 2010; Chitturi et al., 2011). Therefore, effectiveness of 94 percent was applied to 
all cases in the target population. Since effectiveness reflects prevention of the crash, case weight 
in each target population crash was multiplied by (1-Eadj), where Eadj was the effectiveness 
adjusted for penetration.  
 
It is acknowledged that some of the cross-over crashes in the future will become single-vehicle 
crashes into structures in the median with implementation of CMB. This expected increase in 
single-vehicle crashes was accounted for by upweighting some categories of crashes in the 
single-vehicle target population, as discussed below. 

F.3.2.2 Effectiveness in single-vehicle crashes 
Since some vehicles that depart the left side of the road will come to a rest mid-median, the 
presence of any barrier will increase police-reported single vehicle crashes of this type by about 
70 percent (Ray et al., 2009; Villwock et al., 2010; Chitturi et al., 2011). However, 70 to 88 percent 
of those police-reported single vehicle crashes on rural highways with a CMB will be low-severity 
PDO crashes (Ray et al., 2009; Villwock et al., 2010; Chitturi et al., 2011).  
 
The distribution of injury severity expected after the installation of a CMB has been estimated in 
the literature (Shankar et al., 1996; Hu & Donnell, 2010). Using the KABCO scale, the 
percentage of occupants killed or with incapacitating injuries decreases with the installation of a 
CMB, while the percentage of occupants with less severe or no injuries increase (Table 156). 
 
Therefore, the effect of cable median barriers on single vehicle crashes was applied in two steps: 
 

1. The percentages of single vehicle crashes with severe injuries, less severe injuries, and 
no injuries was shifted after application of CMB in the model.  

2. Overall, a 70 percent increase in single vehicle crashes was applied due to the presence 
of the barrier. 
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Table 156. Estimated distribution of KABCO injury severities for single vehicle crashes on  
rural highways 

KABCO category 

Percentage of occupants by 
injury severity based on 

median type (%) 
No Barrier CMB 

K (Killed) 0.6 0.5 
A (Incapacitating) 14.8 1.0 
B (Non-Incapacitating) 5.1 5.4 
C (Pain complaint) 11.5 13.9 
O (No injury) 68.0 79.2 

Total 100 100 
 
Since the projection model adjusts occupant cases in the NASS CDS database, which uses MAIS 
for occupant injury severity, Table 156 was converted using the KABCO/MAIS translator 
supplied by Blincoe et al. (2015). The resulting occupant injury severity broken down by MAIS 
is in Table 157.  
Table 157. Estimated distribution of MAIS injury severities for single vehicle crashes on rural highways 

Fatality MAIS 

Percentage of occupants by 
injury severity based on 

median type (%) 
No Barrier CMB 

Fatal Any MAIS 0.66 0.50 
Not Fatal 5 0.27 0.03 
Not Fatal 4 0.79 0.20 
Not Fatal 3 2.17 0.47 
Not Fatal 2 4.51 2.10 
Not Fatal 1 32.4 28.3 
Not Fatal 0 59.2 68.4 
 Total 100 100 

 
Effectiveness, defined as the percentage reduction in cases at each MAIS level when going from 
no barrier to a CMB on a rural highway, is shown in Table 158. Effectiveness accounts for the 
redistribution of case injury severity (reduction of higher-severity cases and increase in lower-
severity cases), and an overall 70 percent increase in single vehicle crashes. For example, the 
percentage of occupant cases in this target population with MAIS 0 injuries increased from 59.2 
percent with no barrier to 68.4 percent with a CMB. Additionally, there was an estimated 
approximate 70 percent increase in single vehicle crashes overall (Ray et al., 2009; Villwock et 
al., 2010; Chitturi et al., 2011), which ultimately resulted in an estimated 96.4 percent increase in 
MAIS 0 injury cases in the single-vehicle target population when a CMB was installed. Based on 
this method, the frequency of more serious injury cases was expected to decrease, while MAIS 0 
and 1 cases would increase, resulting in negative effectiveness for these lower severity levels.  
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Table 158. Overall effectiveness of CMB when compared to no barrier 

MAIS 

Percentage of occupant 
injuries based on median 

type 

70% 
increase 

(1.7×CMB) 

Effectiveness % 
(Reduction from “No 

Barrier”) No Barrier CMB 
3+ 3.89 1.20 2.04 47.6% 
2 4.51 2.10 3.56 21.1% 
1 32.4 28.3 48.1 -48.5% 
0 59.2 68.4 116.3 -96.4% 

Total 100 100 170  
 
For case occupants in the CMB single-vehicle crash target population, CMB effectiveness was 
assigned based on the MAIS in the crash. For example, a crash in which the maximum injury in 
any vehicle was an AIS 2 was assigned an effectiveness of 21.1 percent, reflecting a 21.1 percent 
reduction in crashes of this severity.  
 
It is assumed that the estimated effectiveness of CMB as applied to the projection model was 
conservative. This assumption is primarily because the studies used to develop these estimations 
were based on all police reported, single vehicle crashes on a stretch of rural highway, including 
crashes where the vehicle left either the left or right side of the roadway. However, the projection 
model applied this countermeasure to a much more narrowly defined population which only 
included single vehicle crashes where a vehicle left the left side of the road. 

F.3.3 Cable Median Barrier Penetration 
The FHWA estimated that there were approximately 31,000 miles of rural highway in the United 
States (FHWA, 2014). The installation of CMBs along these highways is increasing due to their 
crash and cost effectiveness. In 2005 there was an estimated 1,900 miles of cable median barrier 
in the United States (Ray et al., 2009). Penetration of CMBs was defined as the likelihood that a 
crash along a rural highway would occur along a stretch of road with cable barrier. It was 
roughly estimated as (1,900/31,000) = 6.1% for 2005. In 2010 the NCHRP report 711 examined 
the use of CMB in 37 States and the participating States reported approximately 4,800 miles of 
cable barrier (Marzougui et al., 2012). Considering that the participating States make up 91 
percent of the land area in the United States (Blank, 2012), the penetration for 2010 was 
estimated as (4,800/(.91*31,000))=17.0%. Assuming that cable median barrier installation 
continues at the same rate, the penetration of this countermeasure along rural highways was 
linearly modeled using Equation (76). Assuming the penetration of CMB along rural highways is 
approximately equivalent to the penetration of CMB at the locations of crashes in the target 
population, the percentage of crashes on rural highways likely exposed to cable median barrier is 
estimated by year in Figure 36. The estimated penetration of CMB by crash year used in the 
projection model is reported in Table 159. 

 𝑃𝑃𝑊𝑊𝑃𝑃𝑊𝑊𝑡𝑡𝑐𝑐𝑃𝑃𝑡𝑡𝑊𝑊𝑃𝑃𝑃𝑃 = 2.1772(𝑇𝑇𝑊𝑊𝑃𝑃𝑐𝑐) − 4359.2 (76) 
where: 

Penetration is the annual penetration of CMB estimated for the projection model, estimated for a given 
crash year. 
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Figure 36. Percentage of crashes on rural highways estimated to have CMB 

 
Table 159. Penetration of CMB (βTY and αCY)  

Crash Year 
αCY for 2004-2015 

and Overall βTY for 2014, 
2020, 2025, 2030 

2004 3.9 
2005 6.1 
2006 8.3 
2007 10.4 
2008 12.6 
2009 14.8 
2010 17.0 
2011 19.1 
2012 21.3 
2013 23.5 
2014 25.7 
2015 27.9 
2020 38.7 
2025 49.6 
2030 60.5 

F.4 Red Light Cameras 
Red light cameras are intended to increase compliance with traffic signals, which is expected to 
reduce intersection-related crashes (specifically, red-light-running crashes). There have been 
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numerous studies of red light cameras over the past 20 years. Table 160 summarizes the key 
results of a literature review, focusing on studies that:  
 

• Include safety outcomes, i.e., crash or injury rates versus only red light violations,  
• Are broad, in terms of location and/or study time period, and  
• Account for spillover effects and/or regression to the mean. 

 
While there appears to be reasonable consistency in the results for the effectiveness of red light 
cameras in preventing right-angle crashes, the results for rear-end crashes vary substantially in 
terms of both magnitude and direction. Because even the direction of the effect is unclear, i.e., 
whether red light cameras increase or decrease rear-end crashes, rear-end crashes were not 
adjusted for the effectiveness of red light cameras in the current version of the projection model. 
However, should more definitive information become available in the future, it will be possible 
to either increase or decrease the rear-end crashes in the projection model.  
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Table 160. Red light camera literature review 

Study Method Results (Changes With Red Light Cameras) 
Aeron-
Thomas 
and Hess 
(2005) 

-Literature review of quasi-controlled trials and controlled before-after 
studies of red light cameras, with before-and-after periods of at least 
one year each 
-Before-and-after data extracted and rate ratios calculated for each 
study 
-Rate ratios were pooled to give an overall estimate, using a generic 
inverse variance method and a random-effects model 
-Studies were grouped according to the extent to which they adjusted 
for regression to the mean and spillover effects 

8 percent and 7 percent decreases in total crashes (for 
partially adjusted and fully adjusted studies, 
respectively) 
13 percent and 29 percent decreases in total casualty 
crashes (for partially adjusted and fully adjusted studies, 
respectively) 
14 percent decrease in right-angle casualty crashes (for 
partially adjusted studies)  
18 percent decrease in rear-end casualty crashes (for 
partially adjusted studies) 

Council et 
al. (2005) 

-Empirical Bayes before-and-after approach 
-Crash outcomes obtained from State crash data  
-Data from 7 jurisdictions at 132 treatment sites (across multiple 
States) 

24.6 percent decrease in right-angle crashes 
15.7 percent decrease in right-angle injury crashes 
14.9 percent increase in rear-end crashes 
24.0 percent increase in rear-end injury crashes  
$50,000 overall crash reduction benefit per site year 

Erke 
(2009) 

-Meta-analysis of studies on intersection crashes with enough 
information to compute effect estimates and statistical weights 
-Log-odds method used for effect estimates  
-Studies were evaluated according to the extent to which they adjusted 
for regression to the mean and spillover effects  

15 percent increase in overall crashes 
13 percent increase in injury crashes 
43 percent increase in rear-end crashes 
10 percent decrease in right-angle crashes 

Hu and 
Cicchino 
(2017) * 

-Data from 117 large U.S. cities (across States) collected from 1992 to 
2014 
-Compared 57 cities that initiated camera programs during 1992 to 
2014 and 33 cities without cameras to examine effects of activating 
camera programs. 
-Compared 14 cities that removed cameras 2010 to 2014 to 29 
regionally matched cities with continuous camera programs 
-Poisson regression was used to examine the relationship between 
fatal crash rates and the activation of red light cameras  
-Crash data obtained from FARS 

-When cameras were activated:  
21.3 percent decrease in fatal red-light-running crashes  
14.2 percent decrease in fatal crashes  
-When cameras were deactivated:  
30.1 percent increase in fatal red-light-running crashes  
16.1 percent increase in fatal crashes 

* The target population is defined in terms of “red-light-running crashes.” Because CDS lacks information on causation, these crashes cannot be directly 
identified in the projection model.
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F.4.1 Red Light Camera Target Population 
Ideally, the target population for red light cameras would be defined specifically as red-light-
running crashes. However, NASS CDS does not include any variables that specify whether a 
vehicle ran a red light, so red-light-running crashes could not be directly identified in the 
projection model. Since this limitation was also true of other crash datasets, many studies defined 
the target population as right-angle intersection crashes because these crashes are most likely to 
be attributed to red-light-running and are most likely to benefit from red light cameras. Based on 
a review of the target populations used in the literature on red light cameras (Retting & 
Kyrychenko, 2002; Council et al., 2005; Washington & Shin, 2007), the following target 
population definition and corresponding NASS CDS variables were used in the projection 
model: 
 

• Right-angle crashes46 (broadside crashes involving two vehicles travelling at right angles 
to each other before the crash): ACCTYPE in (86:91),  

• Intersection crash: RELINTER=2 for any vehicle in the crash, and 
• Signalized intersection: TRAFCONT=1. 

 
The target population defined above was consistent with the target population identified in the 
Council et al. study (2005) that was used to define effectiveness in the following section.  

F.4.2 Red Light Camera Effectiveness 
The results from the Council et al. study (2005) were used in this analysis because these authors 
reported the effectiveness of red light cameras on all right-angle crashes, as well as injury-only 
right angle crashes. This specificity allowed for a more detailed application of effectiveness to 
injury and non-injury crashes separately for a target population that could be defined for NASS 
CDS cases in the projection model. The results were reasonably consistent with the results of the 
other studies from Table 160. 
 
To apply Council’s estimates to both fatal/injury crashes and non-injury crashes, effectiveness 
estimates were calculated for non-injury crashes using Equation (77) and the relative proportions 
of fatal/injury target crashes to non-injury target crashes, which were obtained from the crash 
statistics provided in the Council report. These statistics are shown in Table 161, along with the 
resulting effectiveness estimates for non-injury crashes.  
 

                                                 
46 LTAP crashes are not included because left-turn crashes do not typically involve red-light-running (Retting & 
Kyrychenko, 2002).  
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By the definition of effectiveness:  

 𝐸𝐸𝑃𝑃𝑓𝑓𝑓𝑓 =
𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑎𝑎

𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 + 𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑎𝑎
 (77) 

where: 
E is the effectiveness (in injury cases, non-injury cases, and in all cases), and 
Total is the number of injury or non-injury crashes in NCHRP crash statistics. 

 
That relationship can be rearranged to isolate the effectiveness specifically in non-injury cases: 
 

 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 =
𝐸𝐸𝑃𝑃𝑓𝑓𝑓𝑓 ∗ (𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎 +  𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑎𝑎) − 𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑎𝑎

𝑇𝑇𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠−𝑠𝑠𝑠𝑠𝑎𝑎
 (78) 

Table 161. Effectiveness estimate calculation for non-injury crashes 

From Source Data on Effectiveness Council et al., (2005) Calculated With 
Equation (78) 

Eall Einj Totalinj Totalnon-inj Effnon-inj 

24.6% 15.7% 351 1291 27.0% 
 
In summary, the effectiveness values in Table 162 were applied to cases in each target 
subpopulation in the projection model. Injury crashes were defined as crashes in which at least 
one occupant in one vehicle was listed as having at least one AIS 1+ injury. 

Table 162. Effectiveness of red light camera for application to projection model 

Target population Sub-population Effectiveness 

Right-angle intersection crashes 
Injury crashes 15.7% 
Non-injury crashes 27.0% 

F.4.3 Red Light Camera Penetration 
The “penetration” of red light cameras was estimated based on the average percentage of the 
U.S. population who live in communities with red light camera programs, using trends in the 
number of U.S. communities with red light camera programs and population data. It was 
approximated that the percentage of the population who lives in red light camera communities 
corresponds to the percentage of intersection exposures that occur at intersections that include 
red light cameras. This exposure percentage is analogous to the penetration (β) used in other 
countermeasures, and it can be used to estimate the likelihood that an intersection crash in the 
retrospective dataset occurred at an intersection with red light cameras or whether red light 
cameras would be expected to be present for a crash in the future projection dataset. 
 
There were no available projections for the number of red light camera programs in the future, 
but IIHS has reported the number of U.S. communities with red light camera programs each year 
through 2017, as shown in Table 163 (IIHS, 2018). As of 2018 there existed pending legislation 
in at least eight States to restrict automated enforcement and pending legislation in five States to 
allow automated enforcement (Goble, 2018). Therefore, it was assumed that while new red light 
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camera programs would likely continue to be initiated, more red light camera programs would be 
discontinued than initiated each year. Based on this assumption, it was estimated that the number 
of communities with red light camera programs would continue to decrease at the 2012 to 2017 
rate until the number reaches half of the 2012 peak value. This estimated projection is shown in 
the shaded cells in Table 163. After the number of communities with red light cameras decreases 
to half the peak number in 2025, it is estimated, for lack of other data, that communities of 
various sizes will start and discontinue red light camera programs over time, and therefore this 
percentage will remain approximately constant after 2025. 

Table 163. Number of U.S. communities with red light camera programs by year  

Year 

Number of U.S. 
Communities 

With Red Light 
Camera 

Programs 
2004 94 
2005 115 
2006 155 
2007 243 
2008 380 
2009 440 
2010 491 
2011 530 
2012 533 
2013 528 
2014 516 
2015 467 
2016 458 
2017 430 
2018 409.4 
2019 388.8 
2020 368.2 
2021 347.6 
2022 327.0 
2023 306.4 
2024 285.8 
2025 266.5 
2026 266.5 
2027 266.5 
2028 266.5 
2029 266.5 
2030 266.5 
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To estimate penetration of red light cameras for application in the projection model, it was 
necessary to convert the number of communities with red light camera programs into an estimate 
of exposure, estimated in this case by the percentage of the population who live in communities 
with red light camera programs. The percentage of the U.S. population represented by each 
single community with a red-light camera program was calculated using the average population 
of U.S. communities with red light camera programs and the total U.S. population:  
 

1. Using the 2018 Automated Traffic Enforcement State Surveys (NHTSA, 2018a), 
the average population of all jurisdictions (cities, counties, or municipalities) that 
reported both red light camera usage and population data was calculated as 
approximately 209,304 people per jurisdiction.  

2. The total U.S. population in 2017 was estimated as 325,719,178 by the Census 
Bureau (Census Bureau, 2019b).  

3. Therefore, it was estimated that the average community using red light cameras 
represented approximately 0.064 percent (209,304/325,719,178) of the U.S. 
population, in 2017. 

 
Multiplying this percentage (0.064%) by the number of communities with red light camera 
programs provided the percentage of the U.S. population expected to live in communities with 
red light camera programs each year, as shown in Table 164. The decreasing penetration from 
2012 through 2030 can result in a negative adjusted effectiveness for a given case since, for 
example, a 2011 crash in the target population would be less likely to have an available red-light 
camera in 2020 to 2030 than at the time of the original crash. 
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Table 164. Penetration of red light cameras (βTY and αCY) 

Crash Year 
αCY for 2004-2030 
and Overall βTY for 

2014, 2020, 2025, 2030 (%) 
2004 6.0 
2005 7.4 
2006 10.0 
2007 15.6 
2008 24.4 
2009 28.3 
2010 31.6 
2011 34.1 
2012 34.3 
2013 33.9 
2014 33.2 
2015 30.0 
2016 29.4 
2017 27.6 
2018 26.3 
2019 25.0 
2020 23.7 
2021 22.3 
2022 21.0 
2023 19.7 
2024 18.4 
2025 17.1 
2026 17.1 
2027 17.1 
2028 17.1 
2029 17.1 
2030 17.1 
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Interaction with roundabouts countermeasure: Red light cameras will not be installed in 
intersections in the future that are designed as roundabouts. The roundabouts countermeasure is 
not included in the evaluation version of the model, since penetration was determined to be 
essentially unchanged from the retrospective period to the evaluation period. However, the 
roundabouts countermeasure can be applied optionally in versions that project into the future. In 
runs of the model that include the optional roundabouts countermeasure, this interaction between 
red light cameras and roundabouts is addressed by reducing the penetration of the red-light 
countermeasure by the hypothesized penetration of roundabouts (Equation (79)). For example, a 
hypothesized 5 percent penetration of roundabouts among intersections in 2030 would reduce the 
17.1 percent penetration of red light cameras by 5 percent to 16.2 percent. Note that this broad 
adjustment does not account for the likelihood that red light cameras and roundabouts would be 
installed preferentially in certain locations, such as urban locations or intersections with a history 
of high-frequency crashes. 
 
 𝛽𝛽𝑅𝑅𝑇𝑇/𝑅𝑅𝑟𝑟𝑎𝑎𝐹𝐹𝐼𝐼𝑠𝑠ℎ𝑟𝑟 𝑃𝑃𝑃𝑃𝐼𝐼𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃 (𝑟𝑟𝑟𝑟𝑎𝑎𝑔𝑔𝑝𝑝𝑟𝑟𝑎𝑎) = 𝛽𝛽𝑅𝑅𝑇𝑇/𝑅𝑅𝑟𝑟𝑎𝑎𝐹𝐹𝑠𝑠𝑠𝑠ℎ𝑟𝑟 𝑃𝑃𝑃𝑃𝐼𝐼𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃 × (1 − 𝛽𝛽𝑅𝑅𝑇𝑇/𝑅𝑅𝑟𝑟𝑔𝑔𝑠𝑠𝑎𝑎𝑃𝑃𝑂𝑂𝑟𝑟𝑔𝑔𝑟𝑟𝑃𝑃) (79) 

where: 
𝛽𝛽𝑅𝑅𝑇𝑇/𝑅𝑅𝑟𝑟𝑔𝑔𝑠𝑠𝑎𝑎𝑃𝑃𝑂𝑂𝑟𝑟𝑔𝑔𝑟𝑟𝑃𝑃  is the penetration of roundabouts in versions of the model that include roundabouts. 
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